
Dr.
Software
An unfinished journey starting from
dirty code

By Dan Nicolici

Prologue ..3

Chapter 1 - Software systems 4
THE STATE OF SOFTWARE TODAY ...6

HOW DID WE GET HERE? ...7

HOW DO WE FIX IT? ..7

Chapter 2 - Practical example 9
THE APPOINTMENTS SOFTWARE ...9

SETTING UP THE DEV FLOW ...13

PULLING CONCEPTS APART ..17

REFACTOR THE TABULAR VIEW ..17

BUILD A LIST VIEW ...25

PUT IT WHERE IT BELONGS! ..29

SIMPLIFY ..36

ADDING COMMENTS TO AN APPOINTMENT ..57

Chapter 3 - Creating new doors 62
EXTRACT A LIBRARY ..62

OBJECTS? WHY? ...63

REDUCE INHERITANCE ...65

REPRESENT DATA AS DATA ...77

TYPE ABSTRACTIONS ...78

ADD AN HTTP INTERFACE ...85

Conclusions ...94
THE SOURCE CODE ..100

About the Author ...101
1

The Universe is way too big for us to understand, but that
doesn’t mean we shouldn’t try.

Dan Nicolici
Cluj-Napoca, Cluj, Romania
May 2021

2

Prologue

Why this book? I think it’s mostly because I want to have
that “once and for all” feeling about this seemingly never-
ending subject (in my professional life): how to evolve
existing, low quality software, to serve the business
properly.

This book is about taking a real (well… invented, but the
code is as real as you’d find it in the industry) software
system, that needs to grow in functionality, but needs to do
so in the context of an ongoing business, without disrupting
it too much and adding new features with a reasonable
development cost.

The subtitle says it’s an unfinished journey, because the
future never ends (at least as long as we move through this
spacetime), not because our goal of evolving the system
according to requirements isn’t met. And besides, it leaves
room for improvement and responds to statements like:
“yes, but you could have…”.

Enjoy!

3

Chapter 1 - Software systems

We developed tools, over the course of our
evolution, to help us gain a significant advantage
over other species and to make our lives better.

Our brain’s capacity to create sophisticated technology is
what brought us to where we are today. We developed an
unprecedented way of living, here on this planet and, in the
last few decades, we changed it so drastically and so fast,
that we can barely understand the impact it has on our
environment and on ourselves.

The advanced technology we use today is mostly created
and run by software. Farming tools, communication
devices, transportation, scientific research, weapons, etc.,
they all have software controlling most stages in their
processes. So the purpose of software, as the tool that it is,
is to operate other tools, which in turn will serve us in
solving specific domain problems.

4

Software development became such a big deal in our
society, that ever more people are doing it and want to do
it. Unfortunately, a lot of software developers (and dare I
say the majority) make software development a purpose in
itself, not giving the actual domain problem too much
thought (or not at all in many cases). This doesn’t make any
sense. How can you know your tool is actually helping?
Some might argue that software can be broken down into
components, which can be independently built and then
integrated at the end, somewhat similar to a car factory. I
understand the need for this mindset: it makes reasoning
about things, easier. However, because of the “soft” nature
of software, it is orders of magnitude easier to customise
and change it than it is for car parts. This is actually the
reality of software development: constant change. Still, it
seems like most of the time, we build software systems that
are difficult to change and maintain. Attempts have been
made, to change this (e.g., XP, agile, lean, etc.), but
somehow we took those ideas and turned them on their
head until we ended up where we started, software difficult
to change and maintain.
It’s difficult to see software as merely a tool, when there are
countless hours being spent just to learn a particular
programming language or operating system. There are egos
at stake, personal targets, preferences, social aspects
basically. I don’t doubt similar things happen in other
industries as well, but the nature of software integrates
better with our capabilities. This has been observed quite
some time ago already (see Conway’s law).

5

The state of software today

The section title is a bit misleading, because this is certainly
going to be an incomplete overview of the software
landscape, because it comes only from my personal
experience. Obviously, there are vast areas that I haven’t
touched and areas that I’ve never even heard of.
Nevertheless, I have worked with tens of really big systems
and hundreds of smaller ones. I’ve met thousands of
people in the industry and worked directly with less than
that. I’ve had a lot of roles, throughout my professional
years, but since I was a kid, I never stopped coding. So
please take this with a grain of salt.

All projects that I got into had nasty, unnecessary issues.
Almost all of them were started in a rush, to get the
business off the ground and had created a parallel business
of supporting the customers through all the defects they
had. It’s almost like the businesses were caught in a startup
limbo, for years. Sometimes decades! Working in such a
company can take its toll on someone. Most defects in
software come from poor engineering. Oh and yes, design,
architecture and other fancy words, are just engineering in
the software industry, because it is not mature enough to
have that level of abstraction, in which the architect draws
the picture and the engineer implements it in such a way
that it almost 100% of the time is right on the money. No.
Far from it. What happens in reality is that the engineers
try desperately to make the system work somehow, while
maintaining the illusion of the story told by the architect.
Also, the architects are so detached from the engineers,
that they simply cannot adjust the architecture based on
the actual feedback from building the system. So, we end

6

up with long running, half baked systems, that are being
heroically dragged forward by engineers. Wouldn’t that be
a nice winning conclusion? I bet it would!

How did we get here?

Engineers, actually, let’s just call ourselves programmers,
shall we? Where were we? Oh, yes… programmers are very
much to blame for the state of the software. Even if you
don’t receive a good design, you should ask the right
questions to clarify what’s missing and implement it with
those missing variables in mind until you have the answers.
Even more than that, you can (and should!) challenge
things, but make sure you are properly prepared to do so.

A good programmer understands the problem space and
the tools at hand for solving that problem. Unfortunately
(yes, I’m going to come out and say it), the majority of
programmers today, are not good programers. Is it their
fault? Yes and no. Writing software is quite easy: you just
need a computer (or tablet, or phone, whatever…) and a
connection to the internet, right? You have a problem to
solve, you navigate to certain Q&A, voting-based websites
and you get your solution right there, voted by the majority
of programmers. You see the problem? This approach,
almost always leads to a local fix, but generates many other
defects in the process through the butterfly effect.

How do we fix it?

It is fixable with a methodical approach. The journey starts
with you dropping into the middle of an ongoing process
for evolving an existing system. What you usually do, is

7

take an immediate requirement (e.g., a ticket, a user story,
etc.) and try to make sense of the mini-universe around it:
business case, infrastructure, tools, code, delivery process.
In an ideal situation, everything is obvious and the change
you need to do is easy to perform. However, reality is
different. You will encounter mostly drafts in every step of
the way, starting from specs, to poorly running
infrastructure, to flaky tests and unclear code.

In all these cases, the approach I take is this:
1. Run the product (on my dev machine if possible)
2. Run all the automated tests in the project on my dev

machine (the ones that can run locally), if any
3. Understand the requirement through practical

interaction with the local product (find someone that
knows what they need from the system, usually
somebody responsible with the product if the ticket is
unclear)

4. Understand the area around the code that will be
impacted by the requirement

5. Write new shiny code (writing tests first)
6. Link the newly written code with existing code
7. Deliver

Sure, this list is nice and (somewhat) short, but no doubt
you’ve been through a rough time yourself while
attempting one or more of the steps. Don’t worry, we’ll go
through a practical example in the next chapter.

8

Chapter 2 - Practical example

I n this chapter, we’ll do a hands-on exercise. We’re
faced with an appointments system that needs to grow.
We’re contacted by a local medical practice that has an

old and pretty expensive to maintain system that is hard to
use due to its infrastructure. Okay. We’re a bit scared of
those statements, given that the business case seems kind
of trivial: appointments. “So what can you already do with
this system?”, we ask. “Well, we can create new
appointments, by entering the date, the doctor and patient
names. We can also list all the appointments we have.”
Okay, now it’s really scary. This is abnormally trivial for the
“expensive” and “hard to use” terms thrown above.
Let’s have a look!

The appointments software

We open up the source code. By the looks of it, it’s a java
project. We fire up a well known IDE and open the project
from there. Sure enough it loads successfully. We feel proud
we could get this far. Now we’re confident.

9

Suddenly we remember those “expensive” and “hard to
use” terms. It’s a project with 4 java production classes and
a test class. Let’s look at the entry point, the Main class (at
least we assume it’s the entry point, by its name). We bring
it up in the IDE editor and marvel at its simplicity.

10

public class Main {

 public static void main(String[] args) throws IOException, ParseException {
 AppointmentManager appointmentManager =

new AppointmentManager(new AppointmentDAO());
 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

 while (true) {
 System.out.println("Existing appointments:");
 appointmentManager.printAppointments();

 System.out.println("Input new appointment? (y/n)");
 if (br.readLine().equals("n")) break;
 appointmentManager.inputNewAppointment();
 }
 }

}

Hold on! System.out.println? What is this? A console
application? Holly sh..! Yes… “hard to use” makes more
sense now. Moving on, looks like there’s a crude UI being
looped until the end user doesn’t want to enter an
appointment anymore (there’s a yes/no question and a loop
break on the no). Fine. Let’s just run it and see what
happens. Here’s the output:

Existing appointments:

| TIME | DOCTOR | PATIENT |

Input new appointment? (y/n)

What kind of ASCII art is this? It’s waiting for input. No, we
don’t want to enter anything, so let’s hit “n” + Enter. Sure
enough, the process stops, as we expected. Let’s enter an
appointment and see what that look like now. So we fire up
the Main class again and this time we hit “y” + Enter to see
what we’re in for:

11

Enter time:

Oh boy! What format does it expect? Let’s have a look at the
source code. We see that AppointmentManager has method
called inputNewAppointment() and browsing through that
method, we find a date format inside:

private static DateFormat DF = new SimpleDateFormat("dd/MM/yyyy");

We’ll come back to this method, but for now, we have what
we were looking for. But… this is just a date. There is no
time in this format. Hmm… okay, we remember this as an
odd thing and carry on. We now know what to type into the
terminal. We make an appointment for the 5th of April
2021. The next prompts are for the doctor and patient’s
names. This looks straight forward, so we go ahead and
type those in. Boom! We got this! High five!

Enter time: 05/04/2021
Enter doctor: dr. Smith
Enter patient: John Doe
Existing appointments:

| TIME | DOCTOR | PATIENT |

 05/04/2021 dr. Smith John Doe

Input new appointment? (y/n)

So it shows us what we’ve got so far and prompts us to
enter a new appointment or to quit. Phew! We operated the
system. Fantastic!
Time to see what the business wants from this system,
right? When consulted, business wants the ability to switch
the format the appointments are displayed in. Currently,
they show up as a table, but they’d like to see them as lists

12

too. Also, they would like to be able to add comments when
adding a new appointment.
Good! These are pretty straight forward, reasonable
requests. I assume business thinks the same and expects
the same in terms of development costs.

Setting up the dev flow

Before we start coding anything, we want to make sure we
have a good understanding of the local environment we’re
working in. Running the unit tests is always a good place to
start. Let’s do just that.

Oh, we have a failed test. Let’s see why the test is failing.

It looks like it expects 02/12/2019, but instead it finds
EXPIRED. Bummer… No worries, this happens a lot in real
life. Let’s examine the failing test’s source code.

@Test
public void testPrintAppointments() {
 Appointment appointment = new Appointment();
 appointment.setDate(new Date(2019 - 1900, 11, 2));
 appointment.setDoctor("doctor");
 appointment.setPatient("patient");

13

 dao.saveAppointment(appointment);
 appointmentManager.printAppointments();
 ArgumentCaptor<Object> argumentCaptor = ArgumentCaptor.forClass(…);
 verify(out, times(14)).print(argumentCaptor.capture());
 List<String> printout = Arrays.asList(
 "---\n"
 , "| TIME | DOCTOR | PATIENT |\n"
 , "---\n"
 , " ","02/12/2019"," "," ","doctor"," "," ","patient"," ","\n"
 , "---\n");
 assertEquals(printout, argumentCaptor.getAllValues());
}

(You will notice the invalid Java syntax when creating the
argumentCaptor, but that’s code intentionally left out to fit
the page size and besides, it’s not important here).
Let’s first comment on the readability of this test. Method
name starts with “test” which is redundant, because there
already is a @Test annotation. Next, the name of the test
could be improved, to let us know what is expected from
the print output, but we can live with it for now. The layout
of the text is not communicating to us whether it’s setting
things up or exercising code or verifying outcomes. Let’s go
top down and figure this out for ourselves.
It starts by creating an appointment object and setting its
fields. Oh, here’s our date, the one that screwed up the test.
Odd looking date, but that’s because of the old Java Date
API.
Moving on, after the date is all set up, it’s being “saved”
with the help of a dao object. Usually dao stands for Data
Access Object, so no need to look further for now, we just
assume it saves it somewhere dark, where data lives.
Next, we finally encounter the actual piece of code that is
supposed to be tested, the print stuff. The
appointmentManager is used to print the appointments that
it supposedly retrieves from that data layer we’ve assumed
is lurking around before.

14

The following statements look like some Mockito magic.
They set up a way to capture what’s printed to the output
stream. What is that output stream anyway? Let’s have a
look at the overall test setup (@BeforeEach means this
method is going to run… you’ve guessed it, before each test
method):

@BeforeEach
public void setUp() {
 dao = new AppointmentDAO();
 dao.deleteAllAppointments();
 appointmentManager = new AppointmentManager(dao);
 out = mock(PrintStream.class);
 System.setOut(out);
}

Oh, wow! The entire system’s output stream is mocked.
Ugly! Now we understand that the production code is
supposed to print 14 times and to output the exact string
that is expected in the test. Ok, the failure does not occur at
the line where the number of times the code prints, but
man this is brittle test code! The test shouldn’t be
concerned with how many times print is called, but rather
with the final outcome. What if someone decides to
produce the same output by concatenating 2 or more
strings? The result will be the same, but the test will fail.
This is what is meant by a test knowing implementation
details of the production code. It’s bad! Don’t do it!
All right, but what about that EXPIRED we got when
running the test? There is more to the story than this test is
telling us.
Unfortunately, is it almost always the case with code like
this. We’ll have to navigate to production code in order to
understand the whole story.

Let’s have a look at printAppointments:

15

public void printAppointments() {
 List<Appointment> appointments = dao.getAllAppointments();
 if (appointments != null) {
 displayLine("---");
 displayLine("| TIME | DOCTOR | PATIENT |");
 displayLine("---");
 for (Appointment a : appointments) {
 Date date = a.getDate();
 long time = date != null ? date.getTime() : new Date(1970, 1, 1).getTime();
 // appointments older than 6 months are marked as EXPIRED
 if ((System.currentTimeMillis() - time) / 1000 > 3600 * 24 * 30 * 6) {
 display(" ");
 display("EXPIRED ");
 display(" ");
 } else {
 display(" ");
 display(DF.format(a.getDate()));
 display(" ");
 }
 display(" ");
 display(a.getDoctor());
 display(" ");
 display(" ");
 display(a.getPatient());
 display(" ");
 displayLine("");
 }
 displayLine("---");
 } else {
 displayLine("No appointments found");
 }
}

Evrika! Appointments older than 6 months are marked as
expired. The comment says it clearly. Does the code?
Maybe, but it’s not clear, hence the comment. And hello 14
print statements as well, because display and displayLine
are nothing but wrappers:

private void display(Object o) {
 System.out.print(o);
}

private void displayLine(Object o) {
 display(o + "\n");
}

16

We now know for sure that the ones writing this test never
accounted for this business rule, the expired appointments.
Do we fix the test? If we have OCD we can fix the test, just
to see green overall. But we’ll try to refrain ourselves from
doing so. Instead, let’s focus on the new requirements and
build them separately, as much as possible, from the
existing system.

Pulling concepts apart

Clearly, the tabular format is hardcoded. Also, there’s more
going on here than just formatting. There’s fetching the
data, expiration business logic, printing logic. All these
concepts are glued together in a method and thrown in a
class named AppointmentManager (classes that have
Manager in their names, are usually a placeholder for
“there are all kinds of actions that happen with X” type of
statement, but they are “cleverly” grouped together under
one flag: THE MANAGER). Also, there is nothing that would
allow us to switch the format right now. Ok, so first let’s just
pull these concepts apart, in a way that would allow us to
compose them and most importantly, plug in different
implementations, should we so desire (which will serve our
immediate requirements).

Refactor the tabular view

We’d like the display format to be a function of some data
source, something like display(dataSource) that produces
formatted content. It’s a very simple idea, but how did I
come up with it? For one, in the current implementation,
there is no other way of serving the appointments to this

17

method, but indirectly, through the DAO dependency and
only through one single channel: getAllAppointments. What
we would really like is to not care how we end up with the
appointments as long as we have them. Besides, what if
we’ll need other ways of fetching them? We’ll have to open
up this method and in the best case scenario, move the
fetching logic outside or in the worst case scenario,
implement cumbersome fetching logic inside it. So simply
extracting the data source as a function parameter saves us,
the implementers of the method, from dealing with the
dilemma. Then there’s the meta-data, which is tightly
coupled to the structure of the appointments, the table
headers in this case. This is also something we’d like to
ignore as method implementers and have it passed in as an
argument. Since it’s coupled with the actual data, we’ll
create an abstraction that encompasses both.
Next up is the formatting of whatever is provided by the
data source. Since we want different views of the data, it’d
be nice to be able to let the view implementation do its own
thing (or strategy) while we simply tell it what to do (as
opposed to how to do it). The display function would then
belong to this view concept.
The business logic, which is specific to a property of the
model is also clearly polluting the method. At this point, we
shouldn’t be aware of such details, let alone handle them.
Imagine we implement the expiration logic everywhere we
need to do something based on it, not necessarily
displaying stuff, but maybe also sending mails or other
computation. This, by the way, is vastly encountered
throughout real production code bases. When the
expiration rule changes, we need to change all those places.
Horrible! So we’ll have to centralise this logic somewhere
outside this method.

18

Let’s go ahead and express that in code. We’ll create an
interface called DataSource. If we look again at the
printAppointments method, we’ll notice that it first prints
some meta information and only then does it print actual
data content. So we want something like this:

public interface DataSource {
 List<String> entryDetails();
 Stream<List<String>> stream();
}

In the entry details we’ll find header information (for the
tabular view) and the stream will provide lists with data for
each detail. Could we have drafted something more clever,
that would couple those list indexes? Maybe… For now, this
will do.
Now, on to the formatting stuff. We’d basically like the same
data to be viewed from different angles, so let’s go ahead
and express that in code:

public interface View {
 String display(DataSource ds);
}

Great! We now stated in code our desire to take some data
and view it in a certain way. Nice! This is called design, by
the way and it wasn’t so scary, was it? I know “design” is a
confusing term in software development, but it really
doesn’t have to be. By the way, namespaces are a nice way
to organise code. We can organise previous interfaces into
a data and a view namespace. Let’s see how we’d like these
newly created interfaced to be used. We’ll have a stab at it
by writing the documentation of a tabular view. Let’s see:

19

public class TabularViewTest {

 @Test
 public void display() {
 DataSource ds = new DataSource() {
 @Override
 public List<String> entryDetails() {
 return Arrays.asList("text");
 }

 @Override
 public Stream<List<String>> stream() {
 return Stream.of(Collections.singletonList("data"));
 }
 };
 String expected =
 "--------------------------\n" +
 "| text |\n" +
 "--------------------------\n" +
 " data \n" +
 "--------------------------\n";

 String actual = new TabularView().display(ds);

 assertEquals(expected, actual);
 }
}

The code speaks for itself: we have a DataSource that we
feed to a TabularView and we expect that the view will give
us the correct format. The view knows nothing about
where the data is coming from or who is going to consume
its output. It doesn’t even know it exists yet, because we get
a compilation error when we write the test. Let’s create the
class (or better yet, use the tools and tell the IDE to create it
for us). The test will still complain about the display
method of the view, so let’s create that too. We’ll end up
with this:

public class TabularView implements View {
 @Override
 public String display(DataSource ds) {
 return null;
 }
}

20

Now the test compiles just fine. We run it and it fails. Very
good! Now we can go ahead and implement the display
method to make the test pass. I’m not going to go through
the mechanics of implementing this method, because that
is not the point here (besides, you can find the code online
- check at the end of the book), but it should end up looking
something like this (not all implementation details are here,
but we shouldn’t need them to understand what is going
on):

public String display(DataSource ds) {
 StringBuilder sb = new StringBuilder();
 String rowSeparator = rowSeparator(ds.entryDetails());
 sb.append(rowSeparator);
 sb.append(headers(ds));
 sb.append(rowSeparator);
 sb.append(data(ds));
 sb.append(rowSeparator);

 return sb.toString();
}

Pretty little function describing the mechanics of
formatting the data as a table. With this, our test is green.
We’re happy!
For now, the new code is dead. No code is reaching it, apart
from junit. Before we incorporate the shiny new thing, let’s
build a way of switching between views in the user
interface:

while (true) {
 System.out.println("Existing appointments:");
 appointmentManager.printAppointments();

 System.out.println("Menu\nl - list view\nt - tabular view”+
 ”\na - add new appointment\nx - exit");

 String choice = br.readLine();
 if (choice.equals("x")) break;
 switch (choice) {
 case "l": appointmentManager.printAppointments(); break;

21

 case "t": appointmentManager.printAppointments(); break;
 case "a": appointmentManager.inputNewAppointment(); break;
 default: System.out.println("Invalid choice");
 }
}

We’ve changed the UI to make it easier for the user to
switch between views, but we’ve also changed the addition
and exit keys (they used to be only yes/no questions). This
is where we go and get feedback from the business. You
see, we don’t wait for them to provide all the details, but
we help them with proposals like these. They will most
likely accept them and be happy that you’ve thought about
it.
Anyway, let’s get back to what we were developing. Let’s
see what we’ve built. Hit run and:

Existing appointments:

| TIME | DOCTOR | PATIENT |

Menu
l - list view
t - tabular view
a - add new appointment
x - exit

Notice that we’ve simply provided a way to switch between
views, but haven’t provided any new views yes. Both l and t
will print the same tabular view.
Notice something else too? The output doesn’t have any
appointments. But we’ve saved appointments on previous
runs! What happened? Let’s have a look at that DAO:

22

public class AppointmentDAO {

 private static List<Appointment> DB = new ArrayList<>();

 public List<Appointment> getAllAppointments() {
 return Collections.unmodifiableList(DB);
 }

 public void saveAppointment(Appointment appointment) {
 DB.add(appointment);
 }

 public void deleteAllAppointments() {
 DB.clear();
 }
}

Excuse me? This is an in-memory store! How do they keep
track of their appointments? Wait… do they… no way… We
must ask somebody from operations what’s going on here.
We’ve heard Bob from operations has a hard time
maintaining the system. This looks like a tiny console app.
Why would he have a hard time…? Maybe because of this
in-memory store… Let’s talk to Bob. After we talk to Bob,
our minds are blown. There is an entire ecosystem built
around this console app, just to make sure the data is saved
and always available. There are clusters of machines that
replicate the in-memory data and backup mechanisms that
make sure secondary nodes can take over when the
primary goes down. Tons of money are being spent each
month to maintain this infrastructure.
Ok, this is fiction, but believe you me, this kind of madness
is happening out there more often than you might suspect.
Now we understand that running things locally, without the
whole production infrastructure, we get no persistence
between runs. Well, that’s life… We deal with it and move
on.

23

Getting back to where we left off, we need to hook the new
tabular view implementation into existing code. Let’s open
up that AppointmentManager and do it:

public void printAppointments() {
 List<Appointment> appointments = dao.getAllAppointments();
 if (appointments != null) {
 View view = new TabularView();
 display(view.display(createDataSource(appointments)));
 } else {
 displayLine("No appointments found");
 }
}

private DataSource createDataSource(List<Appointment> appointments) {
 return new DataSource() {
 @Override
 public List<String> entryDetails() {
 return Arrays.asList("TIME", "DOCTOR", "PATIENT");
 }

 @Override
 public Stream<List<String>> stream() {
 return appointments.stream()
 .map(a ->
 Arrays.asList(
 isExpired(a.getDate()) ? "EXPIRED" : DF.format(a.getDate()),
 a.getDoctor(),
 a.getPatient()));
 }
 };
}

private boolean isExpired(Date date) {
 long time = date != null ? date.getTime() : new Date(1970, 1, 1).getTime();
 return (System.currentTimeMillis() - time) / 1000 > 3600 * 24 * 30 * 6;
}

We’ve gotten rid of the formatting and delegated the work
to our newly created tabular view. We’ve also extracted 2
other concepts into their own methods (they’re functions
really, but technically we still call them methods, because
they’re tied to the class instance), the data source creation
and the expiration business logic. Let’s run it:

24

Enter time: 05/04/2021
Enter doctor: dr. Smith
Enter patient: John Doe
Existing appointments:

| TIME | DOCTOR | PATIENT |

 05/04/2021 dr. Smith John Doe

Great! It looks identical to what the system did before. Are
we done with the tabular view? Not quite. We have one
more step to go through, which will give us great
satisfaction: we’re going to open the
AppointmentManagerTest class and delete the
testPrintAppointments() test. Yes! Delete! I know that test
verified the saving and retrieval of the appointments, but it
did so using internal mechanisms, by creating it’s own flow.
This flow is not guaranteed to be the same as the
production flow and even if it is, it’s just a duplication that
might dangerously diverge from the original. This usually
happens when the production flow changes, but the test
code does not. More often than not, the test will still pass,
giving us a false confidence. These tests are useless! We
already test the format, so delete and don’t look back!

Build a list view

We’ve refactored the code to not only read better, but to
allow us to see and differentiate the concepts we read. It
should now be obvious that building a list view is exactly
that: building a ListView! How nice, to be able to speak
through code. We’ll first create our expectation of the new
view and consult the business whether this fits their
expectation (yes, we should be able to easily guide business
through our code!):

25

public class ListViewTest {
 @Test
 public void display() {
 DataSource ds = new DataSource() {
 @Override
 public List<String> entryDetails() {
 return Arrays.asList("text, other text");
 }

 @Override
 public Stream<List<String>> stream() {
 return Stream.of(
 Arrays.asList("data", "other data"),
 Arrays.asList("x", "y"));
 }
 };
 String expected = "Details (text, other text):\n- data, other data;\n- x, y;\n";

 String actual = new ListView().display(ds);

 assertEquals(expected, actual);
 }
}

”Yes”, they say! “The expected looks exactly like what we
want”. Looks like it’s time to write the actual view and to
hook it up afterwards. We confidently start writing code to
make the test pass (again, details omitted for brevity):

public String display(DataSource ds) {
 return header(ds).append(data(ds)).toString();
}

The test passes, so we can hook the view into the system.
Where can we hook it though? Currently,
printAppointments() hardcodes the type of view, but we can
inject the view, by extracting it as a function parameter:

public void printAppointments(View view) {
 …
 View view = new TabularView();
 display(view.display(createDataSource(appointments)));
…}

26

The manager class can now print appointments in both
formats. We have to tell it to do so:

public class Main {
 private static ListView listView = new ListView();
 private static TabularView tabularView = new TabularView();

 public static void main(String[] args) throws IOException {
 …
 while (true) {
 …
 switch (choice) {
 case "l":
 appointmentManager.printAppointments(listView); break;
 case "t":
 appointmentManager.printAppointments(tabularView); break;
 …
 }
 …
 }

We’ve created the two views as dependencies in the Main
class (or shall I say namespace, because they’re not related
to it by anything other than scope) and injected them into
the manager, based on the user’s choice (key pressed).
The more TDD inclined, will no doubt have noticed by now
that we are also changing code that has no tests. The class
Main in this case. This is indeed up for debate and
especially so in larger code bases, where things are not as
straight forward as in this case. However, this would not be
TDD, as one would write the test after the fact anyway and
the test would surely be influenced by reading the
production code. In other words, it would be a Production
Code Driven Test, or PCDT (always wonderful to invent yet
another acronym that can spark flamewars, ah well…).
Ain’t nothing wrong with PCDT. In fact, I use it in many
situations to protect against unintentional behavioural
changes. A trade-off needs to be made for each situation
between: “is the change obvious and are we confident

27

enough that it will make the system behave as expected
(confidence comes from fast system feedback, not ego!)?”
and “PCDT will take so long that the time spent on it would
not justify adding the feature in the first place”. Some
systems are so bad, that actually implementing and rolling
the feature out to the users, with no testing, is worth more
than refactoring the codebase until it allows for testing.
It might seem that the previous statement is defeating the
purpose of this book. In a way it is, but it’s also a reality
check. I don’t advocate for fixing all the things. Some things
are not worth fixing. But what is really important is for us,
as engineers, to have that understanding and to know how
to technically advise the business.
Getting back to our appointments, we run the new code,
we add an appointment and, when presented with the
menu, we select l, for list view:

Details (TIME, DOCTOR, PATIENT):
- 05/04/2021, dr. Smith, John Doe;

It works as expected. Now the only requirement left is the
possibility of adding comments together with the rest of the
details of a new appointment.
Let’s stop for a bit and consider this: is the system in a good
shape? Not really… at least the code is not as
“accommodating” as we’d like it to be. We’ve already talked
about the XManager naming style. So would this be a good
opportunity to improve it? What should we base the
answer to this question on? We can’t just base it on the fact
that the code could surely use some love, because we’re
serving a business purpose after all. This is where usually
things go south. Engineering pushes the business to get
time for cleaning up the code and business pushes

28

engineering to ship faster. And guess what? Both parties are
right! What’s with the contradiction then? Where does it
come from? It’s usually because the upfront discussions
(the ones before the requirements were issued) did not
include enough details from both sides to allow for a
proper understanding of the desired outcome. I’m
digressing here, but bear with me, it’s worth it! It might
save you a lot of headaches down the road. In every
software development scenario there is a minimum of 4
players: users, business, engineering and the system. When
discussing changes, business and engineering must
ALWAYS triangulate decisions based on the other players.
Whenever one of the 3 points are left out from this
discussion, they will end up in implied expectations. The
implied expectations will almost certainly be different for
each party, hence the misunderstanding before shipping
the change. Now we know how we should answer our
initial question about moving along with refactoring. We’ve
properly triangulated decisions together with the business
and we agreed we would have some time for this
improvement (of course we have, because I decided so,
being the writer of the book; had we not have agreed, we
would have had to rush the feature implementation based
on the dirty code and ship).

Put it where it belongs!

Printing to a console can move out of the manager. We’ll
create a new package, called io, a new class, called Console
and move the actual printing operation over there. Let’s do
it:

29

public class Console {
 public static void print(Object o) {
 System.out.print(o);
 }

 public static void printLine(Object o) {
 print(o + "\n");
 }
}

What about the data related operations? Let’s just move
those to the AppointmentDAO class for now. While we’re at
it, the DAO is a data source, so let’s formalise this:

public class AppointmentDAO implements DataSource {

 private static List<Appointment> DB = new ArrayList<>();

 …

 @Override
 public List<String> entryDetails() {
 return Arrays.asList("TIME", "DOCTOR", "PATIENT");
 }

 @Override
 public Stream<List<String>> stream() {
 return DB.stream()
 .map(a ->
 Arrays.asList(
 a.isExpired() ? "EXPIRED" : a.getFormattedDateString(),
 a.getDoctor(),
 a.getPatient()));
 }
}

I know there’s maybe more going on than it should in the
DAO, but let’s keep the data related stuff in this namespace.
We’ll decide later if there’s anything better we could do.
For now, it’s much better than having it in an anonymous
concept, like manager. Oh, yeah… and I hope you’ve
noticed that the appointment knows whether it’s expired or

30

not and also has a string representation of its date. This is
what it looks like:

public class Appointment {

 public static DateFormat DF = new SimpleDateFormat("dd/MM/yyyy");

 …

 public boolean isExpired() {
 long time = date != null ? date.getTime() : new Date(1970, 1, 1).getTime();
 return (System.currentTimeMillis() - time) / 1000 > 3600 * 24 * 30 * 6;
 }

 public String getFormattedDateString() {
 return DF.format(date);
 }
}

The class uses global state to determine something?
Blasphemy? Usually yes! Let’s try to live with this for a
while, as we’re still moving parts around. Maybe we’ll find a
better home for this.
Having moved the printing, data access and business logic
to their respective places, we can adapt the main class to
make use of them:

public static void main(String[] args) throws IOException {
 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 while (true) {
 Console.printLine("Menu\nl - list view\nt - tabular view…");
 ...
 switch (choice) {
 case "l":
 display(dao, listView);
 break;
 case "t":
 display(dao, tabularView);
 break;
 case "a":
 appointmentManager.inputNewAppointment();
 break;
 …
 }
 }
}

31

private static void display(AppointmentDAO dao, View view) {
 if (dao.appointmentsCount() > 0)
 Console.print(view.display(dao));
 else
 Console.printLine("No appointments found");
}

Main uses now the Console for output, but not for input.
The manager is still used for input. We’d like to find a nice
home for the input capability, preferably close to the
output capability as they’re part of the same I/O (input/
output) concept. By the way, we keep hitting that “run
tests” button while we move these things around. When the
code doesn’t compile, it’s ok. We make it compile and then
run the tests.
We’ve had to adapt AppointmentManager to use the
Console for output, as we’ve moved out its display
functions:

public void inputNewAppointment() {
 ...
 try {
 Console.print("Enter time: ");
 String date = br.readLine();
 try {
 appointment.setDate(Appointment.DF.parse(date));
 } catch (ParseException e) {
 Console.printLine("invalid date");
 }

 Console.print("Enter doctor: ");
 String doctor = br.readLine();
 appointment.setDoctor(doctor);

 Console.print("Enter patient: ");
 String patient = br.readLine();
 appointment.setPatient(patient);
 } catch (IOException e) {
 // do nothing
 }

 dao.saveAppointment(appointment);
}

32

There are some data operations we can encapsulate in the
data access namespace. Currently,
AppointmentManagerTest.testInputNewAppointment() gets
all the data and then uses just a small amount of it:

@Test
public void testInputNewAppointment() {
 …
 assertEquals(1, dao.getAllAppointments().size());
 Appointment appointment = dao.getAllAppointments().get(0);
 …
}

We’re not extremely concerned with performance at this
point, but we can make those queries explicit in the data
layer and let it decide how to answer:

@Test
public void testInputNewAppointment() {
 …
 assertEquals(1, dao.appointmentsCount());
 Appointment appointment = dao.findByIndex(0);
 …
}

For now, we just move the implementation to the DAO as it
is:

public class AppointmentDAO implements DataSource {
…
 public int appointmentsCount() {
 return DB.size();
 }

 public Appointment findByIndex(int index) {
 return DB.get(index);
 }
…
}

Run tests. They pass. Nice!

33

All that reading from the console scares us a little bit. Let’s
try something small first. Let’s just move the part where we
read the user’s choice. That means this:

public static void main(String[] args) throws IOException {
 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

 while (true) {
 Console.printLine(“…”);
 String choice = br.readLine();
 if (choice.equals("x"))
 break;

 switch (choice) {
 …
 }
 }
}

Becomes this:

private static final String MENU = "Menu\n" +
 "l - list view\n" +
 "t - tabular view\n" +
 "a - add new appointment\n" +
 "x - exit";

public static void main(String[] args) {
 for (char choice = Console.choice(MENU);
 choice != ‘x';
 choice = Console.choice(MENU)) {
 switch (choice) {
 …
 }
 }
}

We moved the mechanics of reading input into the Console
namespace. Also, an important change is that we’ve
dropped the IOException from main’s signature. This is a
bold move and may have implications when the system
exits. We need to be careful with these sort of things, as
throwing exceptions has meaning in systems that allow for

34

it. In this case we would need to see if anything relies on
the fact that the system might exit abnormally (with an
exception in this case). There might be something that
reads the system’s output and reacts accordingly, for
example by restarting it. In this case, after a bit of asking
around and looking at the infrastructure running our
application, we’ve concluded there wasn’t such a
mechanism in place and it was safe for us to actually handle
that IOException and translate it in a domain value:

public class Console {
 private static BufferedReader SYS_IN_READER = …(System.in));
 …

 public static char choice(String menu) {
 printLine(menu);
 try {
 return SYS_IN_READER.readLine().charAt(0);
 } catch (IOException e) {
 e.printStackTrace();
 return 'x';
 }
 }
}

We still exit in case of an IOException, but we do so
gracefully. We log the exception and return a value that
means exit. The implementation is just code ported from
Main, but housed under a name that describes the intent.
I’m not hung up on names like getChoice for example,
because I could simply say that the choice is a function of
menu and input (input in this case is still an implicit
parameter that comes from the global context - which is not
so great).

35

Simplify

We’re now going to make things more explicit and get rid of
the whole Manager confusion. The application displays
appointments and creates new appointments. Well, let’s
express just that:

public class Application {

 public static void createNewAppointment(AppointmentDAO dao) {
 …
 }

 public static void displayAppointments(AppointmentDAO dao, View view) {
 …
 }
}

Move the existing implementation from Main to this new
class, so that this:

public static void main(String[] args) {
 …
 display(listView);
 …
 display(tabularView);
 …
 appointmentManager.inputNewAppointment();
 …
}

which calls Main.display and
AppointmentManager.inputNewAppointment, will only make
use of the centralised behaviour in Application, like so:

public static void main(String[] args) {
 …
 Application.displayAppointments(dao, listView);
 …
 Application.displayAppointments(dao, tabularView);
 …
 Application.createNewAppointment(dao);
 …
}

36

We’ve had a brief encounter with inputNewAppointment,
when we’ve had to adapt it to use Console. Let’s look at the
whole thing:
public void inputNewAppointment() {
 Appointment appointment = new Appointment();
 appointment.setId(System.currentTimeMillis());

 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 try {
 Console.print("Enter time: ");
 String date = br.readLine();
 try {
 appointment.setDate(Appointment.DF.parse(date));
 } catch (ParseException e) {
 Console.printLine("invalid date");
 }

 Console.print("Enter doctor: ");
 String doctor = br.readLine();
 appointment.setDoctor(doctor);

 Console.print("Enter patient: ");
 String patient = br.readLine();
 appointment.setPatient(patient);
 } catch (IOException e) {
 // do nothing
 }

 dao.saveAppointment(appointment);
}

It creates a new appointment object, fills it in with user
input (in real time) and saves it. What’s up with that setId
stuff? Turns out nobody uses the id for anything, so it’s just
useless code. Nice! We delete the ApointmentManager class
and by moving this to the Application namespace, we broke
the AppointmentManagerTest.testInputNewAppointment.
This is a good opportunity to look at that test:

37

@Test
public void testInputNewAppointment() {
 String data = "20/10/2018\ndoctor\npatient\n";
 ByteArrayInputStream in = new ByteArrayInputStream(data.getBytes());
 System.setIn(in);
 appointmentManager.inputNewAppointment();
 assertEquals(1, dao.appointmentsCount());
 Appointment appointment = dao.findByIndex(0);
 assertEquals(new Date(2018 - 1900, 9, 20), appointment.getDate());
 assertEquals("doctor", appointment.getDoctor());
 assertEquals("patient", appointment.getPatient());
}

The test replaces the global system input stream (because
the developer knew appointment manager uses it - this is
not visible in the test - bad!) to be able to pass the input
from a string. Sometimes (actually, pretty often) you will
find this style of testing, where tests use and replace global
state. I will show you how we can fix this here, but you
won’t always have the resources to do so, because you will
find out that hundreds of tests are affected by this global
state and touching it will have you fix, well… hundreds of
tests, which is impractical. In those cases, when you need
to write a test that modifies global state, this is what you
need to do:

• Capture desired global state before the test
• Modify that state to reflect test preconditions
• Run the test
• Restore the global state to what it was

Ok, you will say, but this way I’ll lose the possibility of
running those tests in parallel. Yes, that’s right! But tests
that already relied on global state had a close to zero
probability of being run in parallel before anyway.
For now, we’ll make the test compile and pass by using the
Application namespace instead:

38

@Test
public void testInputNewAppointment() {
 …
 appointmentManager.inputNewAppointment();
 Application.createNewAppointment(dao);
 …
}

We’ll also rename the test to ReadAppointmentTest and
remove AppointmentManager from everywhere.

Phew! We’re happy we were able to express what the
application does better. The implementation that creates a
new appointment is still pretty verbose and feels like it
should delegate the I/O to Console. The I/O simply prompts
the user for input and reads strings back from the system’s
input stream. We can implement this inside Console:

public static Optional<String> readString(String prompt, String errMessage) {
 print(prompt);
 try {
 return Optional.of(SYS_IN_READER.readLine());
 } catch (IOException e) {
 printLine(errMessage);
 return Optional.empty();
 }
}

Uh oh! Did we just change the input error handling
semantic? Yep! How so? Well, if you go back to the original
code, you will see that there isn’t much error handling
happening there. In case of input errors when entering a
doctor it will ignore the patient. Is that ok? Most likely not!
We need to make sure, though, that no other system makes
use of that bug (maybe by running a nightly cron job and
counting appointments without patients for some reports).
Once we do that, we also inform stakeholders we’ve found
and will fix a bug, then we can carry on. Let’s use this

39

function in the creation of a new appointment. Now the
Application class looks like this:

public class Application {

 public static void createNewAppointment(AppointmentDAO dao) {
 Appointment appointment = new Appointment();

 Console.readString("Enter time: ","invalid date")
 .ifPresent(appointment::setDate);
 Console.readString("Enter doctor: ", "")
 .ifPresent(appointment::setDoctor);
 Console.readString("Enter patient: ", "")
 .ifPresent(appointment::setPatient);

 dao.saveAppointment(appointment);
 }

 public static void displayAppointments(AppointmentDAO dao, View view) {
 if (dao.appointmentsCount() > 0)
 Console.print(view.display(dao));
 else
 Console.printLine("No appointments found");
 }
}

It reads well. One thing to notice, though, is setting the date
from a string. We’ve had to trade of responsibility for
readability, by adding this to the Appointment model class:

public void setDate(String dateString) {
 try {
 date = DF.parse(dateString);
 } catch (ParseException e) {
 // don't set invalid date
 }
}

At least we got to see what the code can look like when it’s
readable. Still, it’s not a nice trade-off. We want that parsing
out of the model, but we like this style of reading from the
Console. Ok then, we’ll enhance the Console with the ability
to read typed input, not just strings.

40

Let’s stop for a second and analyse the previous statement
(spoiler alert! We’re doing design again). We want to give
Console a new ability, but which ability does it already
have? It can do I/O and specifically, it can do I/O using the
system’s input and output streams. Ok, so it seems that the
only specific thing is the medium of I/O. We’ll pull out the
part that is not specific, in the form of a contract:

public interface IO {

 void print(Object o);
 void printLine(Object o);
 Optional<String> readString(String prompt, String errorMessage);
}

The contract specifies what behaviour the Console should
(and in this case already does) implement. We can have it
implementing this interface, but we won’t do that just yet,
because we would like it to read typed input, more
specifically dates. Let’s first express that date input reading
contract:

public interface TypedIO extends IO {

 DateFormat DF = new SimpleDateFormat("dd/MM/yyyy");

 default Date readDate(String prompt, String errorMessage) {
 try {
 return DF.parse(readString(prompt, errorMessage).get());
 } catch (ParseException e) {
 printLine(errorMessage);
 return readDate(prompt, errorMessage);
 }
 }
}

Looks familiar? Yes, it’s the same parser that we’ve
temporarily misplaced in the model. Now the Console can
implement this contract:

41

public class Console implements TypedIO

We can remove the date parsing from the model. This will
break the code in the data access layer:

public Stream<List<String>> stream() {
 return DB.stream()
 .map(a ->
 Arrays.asList(
 a.isExpired() ? "EXPIRED" : a.getFormattedDateString(),
 a.getDoctor(),
 a.getPatient()));
}

and we need to replace the parsing:

public Stream<List<String>> stream() {
 return DB.stream()
 .map(a ->
 Arrays.asList(
 a.isExpired() ? "EXPIRED" : TypedIO.DF.format(a.getDate()),
 a.getDoctor(),
 a.getPatient()));
}

Design moment again: is it ok to have data transformation
logic in here? Why not? We’re not returning the actual
format that’s stored, but a different representation of it
anyway. If it turns out to be a pain in the future, we’ll have
to revisit this decision, but for now, it looks good.

Let’s go ahead and actually make use of the newly created
I/O contracts. Currently, our Application makes direct use
of the Console, which binds it to a specific I/O medium.
We’d also like to give ourselves the freedom of choosing
that medium, should we be required to. So let’s decouple
the Application from it and simply inject I/O through
contracts:

42

public static void createNewAppointment(AppointmentDAO dao, TypedIO io) {
 Appointment appointment = new Appointment();
 appointment.setDate(
 io.readDate("Enter time: ","invalid date"));
 io.readString("Enter doctor: ", "")
 .ifPresent(appointment::setDoctor);
 io.readString("Enter patient: ", "")
 .ifPresent(appointment::setPatient);
 dao.saveAppointment(appointment);
}

public static void displayAppointments(AppointmentDAO dao, View view, IO io) {
 if (dao.appointmentsCount() > 0)
 io.print(view.display(dao));
 else
 io.printLine("No appointments found");
}

Now we’re really applying dependency inversion for both
the view and I/O. Application becomes almost an abstract
algorithm, which has no knowledge of the underlying
implementations. Why almost? Because we still have that
concrete AppointmentDAO being passed in. We’ll come back
to the design of this part, but for now, let’s have look at the
wonderful thing that happened in the
ReadAppointmentTest. It doesn’t compile anymore, because
we’ve modified the signature of
Application.createNewAppointment, by requiring an I/O. But
this is awesome, because now we don’t have to depend on
the system’s I/O, we can provide our own! That’s the whole
idea behind that previous refactoring we did. We’ll see the
full potential of this later in the book, but for now let’s
write our own test I/O, for the test to use and, while we’re
at it, le’s also write a corner case test, in which a “bad” date
is passed as input:

43

public class ReadAppointmentTest {

 private AppointmentDAO dao;
 private TestIO io;

 class TestIO implements TypedIO {

 List<String> printBuffer = new ArrayList<>();
 Queue<String> readBuffer = new LinkedList<>();

 @Override
 public void print(Object o) {
 printBuffer.add(o.toString());
 }

 @Override
 public void printLine(Object o) {
 printBuffer.add(o + "\n");
 }

 @Override
 public Optional<String> readString(String prompt, String errorMessage) {
 return Optional.of(readBuffer.remove());
 }
 }

 @BeforeEach
 public void setUp() {
 dao = new AppointmentDAO();
 dao.deleteAllAppointments();
 io = new TestIO();
 }
…

The test I/O is nothing more than a couple of buffers that
are used to mimic the behaviour of such a system, but,
more importantly, can be manipulated from our test (which
is the actual purpose here). This is what it looks like:

…

 @Test
 public void testInputNewAppointment() {
 io.readBuffer.offer("20/10/2018");
 io.readBuffer.offer("doctor");
 io.readBuffer.offer("patient");

 Application.createNewAppointment(dao, io);

 assertEquals(1, dao.appointmentsCount());

44

 Appointment appointment = dao.findByIndex(0);
 assertEquals(new Date(2018 - 1900, 9, 20), appointment.getDate());
 assertEquals("doctor", appointment.getDoctor());
 assertEquals("patient", appointment.getPatient());
 }

 @Test
 public void testInputInvalidDateOnNewAppointment() {
 io.readBuffer.offer("xyz");
 io.readBuffer.offer("20/10/2018");
 io.readBuffer.offer("doctor");
 io.readBuffer.offer("patient");

 Application.createNewAppointment(dao, io);

 assertEquals(1, dao.appointmentsCount());
 Appointment appointment = dao.findByIndex(0);
 assertEquals(new Date(2018 - 1900, 9, 20), appointment.getDate());
 assertEquals("doctor", appointment.getDoctor());
 assertEquals("patient", appointment.getPatient());
 }

}

Notice that offering input to the test buffer, remotely
resembles a user typing input to the console (although it is
not, but the metaphor is helpful). We've kept the rest of the
(poor) style intact: test names, date algebra. This is
important, especially in larger codebases where the
programmers invested a lot in that style and it would be
pretty tough to change multiple things at once. Usually, I’m
leaving things related to style for later on in the process,
after I’ve proven the utility of the more important change.
We tend to quickly dismiss this aspect of easing changes in,
but it’s a very important one.
People are resisting change. All of us! Some more than
others, but nevertheless we all do. At its core, this is not a
bad thing. It’s something that evolved to make us retain a
state of wellbeing. Now the variable here is “wellbeing”. In
software development, we can look at wellbeing from
different perspectives. When programmers are reluctant to
make changes to an otherwise healthy and thriving system,

45

they are looking out for the wellbeing of the system and
this is great. But when programmers are reluctant to
change a poorly performing, difficult to modify system,
then they are simply looking out for their own wellbeing,
usually by trying to justify poor decisions or being afraid
they’ll be seen as failures. This most likely means they’ve
had a rough time growing up, by being put down for every
mistake they’ve made. Mistakes should be opportunities for
learning. If we are afraid of making mistakes, we will not
learn. Let’s stop with psychology for now and carry on with
programming.
I said we shouldn’t change too many aspects at once, but
nevertheless, I’ll show you my preference for naming tests:

@Test
public void input_new_valid_appointment()…

@Test
public void input_invalid_date_on_new_appointment()…

I sometimes mention the expectation in the test name, but
when I don’t, it’s implied in the namespace (the class name
in this case): CreateNewAppointmentTest. Yes, I’ve renamed
ReadAppointmentTest. I do this from time to time, when I
think a certain name describes the actions better.

I haven’t explicitly stated this so far, but I kept mentioning
namespaces, contracts, behaviour and so on, but I’m going
to address this now. As you might have noticed, I used the
static qualifier quite a few times up to this point. Why?
Because there simply wasn’t the need for a specific object
instance to be around, for those contexts. Those are
basically functions, which have no need for external
context other than the arguments passed in. I kept pushing
the term namespace, because class represents a template

46

from which instance objects are created. Functions are
smaller building blocks than classes. They can also be
tested easier, as they do not have multiple doors, like
classes do. Functions can take other functions as
parameters and can also return functions. They can easily
be composed and rearranged. Yes, you can achieve the
same things with objects, but the overhead is quite big and
frankly… not worth it. So in general, I try to keep things
simple and build all I can with just functions. Let’s push the
system towards this and simplify it as much as we can. Let’s
start simple, by mapping those user choices to functions in
a more direct and obvious way:

private static Map<Character, Runnable>
 FUNCTION_TABLE = new HashMap<Character, Runnable>() {
 {
 put('l', () -> Application.displayAppointments(dao, listView, console));
 put('t', () -> Application.displayAppointments(dao, tabularView, console));
 put('a', () -> Application.createNewAppointment(dao, console));
 }
};

private static Console console = Console.getInstance();
private static ListView listView = new ListView();
private static TabularView tabularView = new TabularView();
private static final AppointmentDAO dao = new AppointmentDAO();

public static void main(String[] args) {
 for (char choice = console.choice(MENU); choice != 'x'; choice =
 console.choice(MENU)) {
 Optional.ofNullable(FUNCTION_TABLE.get(choice))
 .orElse(() -> console.printLine("Invalid choice"))
 .run();
 }
}

What’s the advantage of this approach? Now the algorithm
in main can stay untouched, while we can always add new
choice to function entries in the FUNCTION_TABLE. Also,
we can observe a separation of concepts: declarative
functionality, dependencies (yes, console is a singleton,

47

deal with it!) and runtime mechanism. All simple,
straightforward, without hidden coupling or implicit rules.

What’s next? I don’t like the fact that I have to wait for user
input inside a function parameter:

appointment.setDate(io.readDate("Enter time: ","invalid date"));

I would rather have the action the system must take, upon
successful input, specified as a callback, like so:

io.readDate("Enter time: ", "invalid date", appointment::setDate);

To me, this is much more expressive, as it suggests that I/O
should read the date into a specific appointment field. To
make this happen, we need to overload the readDate
function, to accept a callback:

public interface TypedIO extends IO {

 …

 default Date readDate(String prompt, String errorMessage, Consumer<Date> f){
 Date date = readDate(prompt, errorMessage);
 f.accept(date);
 return date;
 }
}

We do the same for IO.readString. Now, going back to the
Application namespace, we’d like to enhance those
functions with composition capability. As they are now,
they can only be called to produce… well… nothing:

public static void createNewAppointment(AppointmentDAO dao, TypedIO io)

public static void displayAppointments(AppointmentDAO dao, View view, IO io)

48

To give them composition capabilities, we could implement
them to return functions which we can later compose with
other functions at the calling site. Before we write that, let’s
reason about what should be fixed and what should be
variable for those functions we’ll return.
For the creation of new appointments, we don’t need to
know the dao and the io, as they only represent the
“outside” world, which is not essential to the creation
algorithm. As a matter of fact, the same goes for the
displaying of appointments. However, we’d like to
“capture” the view before we start searching for and
displaying appointments. Let’s see what this looks like in
code:

public static BiFunction<AppointmentDAO, TypedIO, IO> createNewAppointment()
{
 return (dao, io) -> {
 Appointment appointment = new Appointment();
 io.readDate("Enter time: ", "invalid date", appointment::setDate);
 io.readString("Enter doctor: ", "", appointment::setDoctor);
 io.readString("Enter patient: ", "", appointment::setPatient);

 dao.saveAppointment(appointment);

 return io;
 };
}

We chose to return an I/O, for no apparent reason, but to
have the function return something. We did the same for
displaying appointments

public static BiFunction<AppointmentDAO, IO, IO> displayAppointments(View view)
{ return (dao, io) -> {
 if (dao.appointmentsCount() > 0)
 io.print(view.display(dao));
 else
 io.printLine("No appointments found");
 return io; };
}

49

We can now rewrite Main to reflect the separation between
functionality and environment (we rename those
dependencies to java constant standards, using uppercase,
to keep more conservative users happy):

private static Map<Character, BiFunction<AppointmentDAO, ? super Console, IO>>
FUNCTION_TABLE = new HashMap<>() {
 {
 put('l', Application.displayAppointments(LIST_VIEW));
 put('t', Application.displayAppointments(TABULAR_VIEW));
 put('a', Application.createNewAppointment());
 put('x', (__, ___) -> { System.exit(0); return null; });
 }
};

private static final BiFunction<AppointmentDAO, ? super Console, IO>
INVALID_CHOICE = (__, io) -> {
 io.printLine("Invalid choice"); return io;
};

public static void main(String[] args) {
 while (true) {
 Optional.ofNullable(FUNCTION_TABLE.get(CONSOLE.choice(MENU)))
 .ifPresentOrElse(
 f -> f.apply(DAO, CONSOLE),
 () -> INVALID_CHOICE.apply(DAO, CONSOLE));
 }
}

We were able to express the function table in a more
business readable way. I bet that if we show the function
table to a business person, they’ll know how to interpret it.
We also named the invalid choice, to make it even more
obvious in code. All those type signatures are driving us
nuts, don’t they? Keep reading, we’ll address that too, later
in the book.
Some languages are very expressive. Java is not one of
them, but that should not be a deal breaker, as we can write
expressive code in spite of this. We can take advantage of
Java’s type inference and get rid of the left hand side type
declaration by using the var keyword. Whenever we use
language features which require a different version of the

50

language than the one that’s currently used by the system,
we need to make a thorough investigation about upgrading.
Upgrading can mean both compile time problems (those
are easy to spot - the compiler will complain right away)
and runtime problems (these are not easy to spot). Do we
need to upgrade just to take advantage of new language
features? No, that’s not the main reason one should
consider upgrading the platform used by the system. New
versions usually introduce bug fixes, security patches,
performance upgrades.
We upgrade the Java version and we do our due diligence
with respect to regression testing. It all still works, so we’re
good.
There is a functional thing we’d like to address. We’ve
brushed against it before and only addressed it from a
technical perspective. It’s the error handling for user input.
Currently, if the user enters something the system cannot
parse or there’s something going wrong during the input
process, the application will exit (or behave like the input
was the exit command “x”). This is not very resilient. We’d
like to be proactive and propose a resilience mechanism to
the business. When an input error happens, an error
message should be shown and the prompt for input should
come back.
The business will not refuse these kinds of small
improvements, unless the trade-off for delivering them is
huge. For example, if the improvement will not have a big
positive impact on the users (maybe they are used to the
current behaviour and they’ve modelled their processes
around it), but rather will force them to adapt and by doing
so become frustrated, the business will gravitate towards
not making the change. That’s why we need to always
discuss the functional changes with them. Remember: this

51

is not refactoring! Changing functionality is not just
changing code shape! Business agrees to the change, so we
go ahead with it:

public char choice(String menu) {
 printLine(menu);
 try {
 return SYS_IN_READER.readLine().charAt(0);
 } catch (Exception e) {
 printLine("Cannot read line. Try again.");
 return choice(menu);
 }
}

Let’s step back again and have a look at how the whole
story reads. We have an Application and a Main. This is
awkward. Sounds like two of the same thing. I know we
were the ones that decided to do it, but it does look kind of
silly. What were we thinking? Never mind, we can change
it. Let’s get rid of that Main and have the application take
over the role of the entry point, by renaming Main to
Application, that is. What about the old Application then?
That should really be named Appointments, as that is the
perfect name for operations on and with… appointments.
We can then shorten the operation names as well. Let’s see
what this look like:

public class Appointments {

 public static BiFunction<AppointmentDAO, TypedIO, IO> createNew() {
 return (dao, io) -> {
 var appointment = new Appointment();
 io.readDate("Enter time: ", "invalid date", appointment::setDate);
 io.readString("Enter doctor: ", "", appointment::setDoctor);
 io.readString("Enter patient: ", "", appointment::setPatient);

 dao.saveAppointment(appointment);

 return io;
 };
 }

52

 public static BiFunction<AppointmentDAO, IO, IO> display(View view) {
 return (dao, io) -> {
 if (dao.appointmentsCount() > 0)
 io.print(view.display(dao));
 else
 io.printLine("No appointments found");
 return io;
 };
 }
}

This will force us to adapt some production and test code.
In particular, we’ll have to adapt the FUNCTION_TABLE:

FUNCTION_TABLE = new HashMap<>() {
 {
 put('l', Appointments.display(LIST_VIEW));
 put('t', Appointments.display(TABULAR_VIEW));
 put('a', Appointments.createNew());
 put('x', (__, ___) -> { System.exit(0); return null; });
 }
};

Now it reads even better! If you squint your eyes and look
past the Java syntax, it can serve as documentation (which
is what clean code is all about).

One last thing, before we implement appointment
comments, it would be nice to get rid of those horrible old
Date objects from the Appointment model and the ugly
arithmetic the code is doing with them:

public boolean isExpired() {
 long time = date != null ? date.getTime() : new Date(1970, 1, 1).getTime();
 return (System.currentTimeMillis() - time) / 1000 > 3600 * 24 * 30 * 6;
}

Later Java versions have better date related APIs and we’d
like to use them. We have 2 options. Either change the
model’s date type from Date (old API) to LocalDate (new
API) or wrap the field in a LocalDate variable inside

53

isExpired, do the arithmetic with the new API and leave the
field as it is. The second approach is safer, because it won’t
break APIs and compatibility, but we’ll take the first
approach anyway, just because I want to discuss the
approach. First, let’s see what I mean by the first approach.
We’ll change this:

private Date date;

into this:

private LocalDate date;

Granted, there will be a couple of places in the codebase
where we need to adapt the date parsing style, but that’s
trivial. Also, the compiler will make it trivial for us to match
the new type everywhere it’s being used.

Now, the real reason I wanted to take this route is to discuss
what we could potentially break if we do this and how we
should approach such a change. Since we are touching the
model, we can create incompatibility with old, persisted
models. What we also have to think about in such situations
is a migration strategy, to avoid runtime errors while the
new code encounters old models. Basically there are 2 sides
to the model change coin:

1. Adapt old code to new model
2. Adapt new code to old model

In the first case, the compiler can pretty much do the job
on its own while in the second case, the programmer needs
to pay close attention to the migration strategy (updating

54

storage models, cron jobs, etc.). In our case, we have an in
memory storage (a list), but if you recall from earlier in the
book, this is replicated between machines, for fault
tolerance and availability. So we’ll have to look into that
replication mechanism and come up with a migration
strategy (a mental exercise for the reader, as the
infrastructure is not part of this book’s scope… maybe in
the next book).
Going back to the expiration question, we can write it
better, by making use of the new date API:

public boolean isExpired() {
 return date.isBefore(LocalDate.now())

&& Period.between(date, LocalDate.now()).getMonths() > 6;
}

No more dodgy year subtractions and seconds
multiplication, just a clear exposition of our intention.

Using new language features can be a good opportunity to
improve readability. For example we can transform this
snippet from Appointment.display:

if (dao.appointmentsCount() > 0)
 io.print(view.display(dao));
else
 io.printLine("No appointments found");
return io;

to this:

switch (dao.appointmentsCount()) {
 case 0 -> io.printLine("No appointments found");
 default -> io.print(view.display(dao));
}

Since we are simplifying code, let’s do something
controversial, both because it’s going to make code more

55

readable, but because it’s also going to hurt the system in a
way that is not obvious until runtime. We’ll get rid of the
loop in main:

public static void main(String[] args) {
 while (true) {
 Optional.ofNullable(FUNCTION_TABLE.get(CONSOLE.choice(MENU)))
 .ifPresentOrElse(
 f -> f.apply(DAO, CONSOLE),
 () -> INVALID_CHOICE.apply(DAO, CONSOLE));
 }
}

And replace it with a recursive call:

public static void main(String[] args) {
 Optional.ofNullable(FUNCTION_TABLE.get(CONSOLE.choice(MENU)))
 .ifPresentOrElse(
 f -> f.apply(DAO, CONSOLE),
 () -> CONSOLE.printLine("Invalid choice"));
 main(args);
}

Oh, and yes, the INVALID_CHOICE is inlined once again.
Now functional programmers do this a lot: recursive calls.
In some programming languages, this is the preferred way
of looping. However, recursion implies building on top of
the stack and if this is not optimised (with tail call
optimisation for example), the stack will blow up after a
certain amount of recursions. This is exactly what will
happen in Java, in this particular case. On the other hand,
the code looks cleaner, with less lines and less indentation.
No worries, we’ll put the loop back in the end, but I wanted
to emphasise the fact that these changes are dangerous,
especially without proper test harnesses (this will run just
fine if we just enter a couple of thousand inputs, but would
crash with a proper stress test).

56

Adding comments to an appointment

We’ve “massaged” the system enough to allow us to easily
continue with the addition of comments on every new
appointment and with displaying them. Let’s satisfy the
TDD inclined readers and refrain from simply adding the
comments property to the model first and instead write a
test for this first. Should we write a test for the model?
What then, test the mutator and accessor for that property?
This is silly (as silly as this seems, there’s a lot of that going
on out there, in the wild)! So what would make more sense
then? Maybe verify this through the handling of data, in the
data access layer. We don’t have a direct test for the DAO
yet anyway, so let’s write one now:

class AppointmentsDataSourceTest {

 private final AppointmentDAO dao = new AppointmentDAO();

 @Test
 public void comment_headers_are_displayed() {
 assertEquals(asList("TIME", …, "COMMENTS"), dao.entryDetails());
 }

}

We add a test making sure that the data source will include
comments in the headers. The test will obviously fail,
because we haven’t added them to the headers yet, so let’s
go ahead and do that:

57

public class AppointmentDAO implements DataSource {
…
 private static final List<String> HEADERS =

Arrays.asList("TIME", “DOCTOR”, "PATIENT", "COMMENTS");

…
 @Override
 public List<String> entryDetails() {
 return HEADERS;
 }
…
}

We’re not going to die if we add the comments header AND
we extract the headers to a constant before we run the test
again. Or if you’re hurting, run the test and then extract,
but honestly, if indeed it hurts to do the refactoring in one
move, step back and reconsider your approach to coding
for a bit. Are you focusing on the right aspects?
Anyway, test passes, let’s write the one for the actual data:

@Test
public void comments_are_shown_in_details() {
 dao.saveAppointment(new Appointment()
 .withDate(LocalDate.now())
 .withDoctor("D")
 .withPatient("P")
 .withComments("comments"));

 assertTrue(dao.stream().anyMatch(l -> l.contains("comments")));
}

We’ve done it! We’ve made the test fail without even
running it, because “not compiling is failing”. Constructing
data should be easy, so this builder pattern helps us with
that. So, to make the test compile, we’ll obviously add
those builder methods to the model and, we’ll add the
comments property as a String (see the assertion). Again,
you can do this in very small steps, if you prefer, or all at
once, depending on your inclinations:

58

public class Appointment {

 …
 private String comments;

 …
 public String getComments() {
 return comments;
 }

 public void setComments(String comments) {
 this.comments = comments;
 }

 …
 public Appointment withDate(LocalDate date) {
 this.date = date;
 return this;
 }

 public Appointment withDoctor(String doctor) {
 this.doctor = doctor;
 return this;
 }

 public Appointment withPatient(String patient) {
 this.patient = patient;
 return this;
 }

 public Appointment withComments(String comments) {
 this.comments = comments;
 return this;
 }
}

We now have the infrastructure to support the addition of
comments to an appointment when we create it. We’ll
enhance the user interface to support that too. As we’ve
gotten used to by now, we’ll write the test first, or rather
enhance the existing ones:

59

public class CreateNewAppointmentTest {
 …
 @Test
 public void input_new_valid_appointment() {
 …
 io.readBuffer.offer("comments");

 Appointments.addNew().apply(dao, io);
 …
 assertEquals("comments", appointment.getComments());
 }

 @Test
 public void input_invalid_date_on_new_appointment() {
 …
 io.readBuffer.offer("comments");

 Appointments.addNew().apply(dao, io);
 …
 assertEquals("comments", appointment.getComments());
 }
}

The tests will fail, because we haven’t implemented the
reading of comments. We’re ready to implement it:

public static BiFunction<AppointmentDAO, TypedIO, IO> addNew() {
 return (dao, io) -> {
 var appointment = new Appointment();
 …
 io.readString("Enter comments (if any): ", "", appointment::setComments);
 }
}

Run the test again. It passes. Very good! Are we done? Not
quite. We need to check the whole system. Fire up the
application, enter a few appointments, show them in both
formats, it works! Are we done now? If you paid close
attention to what I’ve said earlier about changing the
model, you would’ve already asked yourself what happens
when this change goes live with the existing models, which
do not have comments and with their synchronisation
between machines. If you did ask yourself that, great! If
not, just remember to think of all those aspects when

60

delivering changes. In the current production architecture,
we’d have to enhance the serialiser that does the sync.

After we make sure all works as expected, we should
deliver. We refactored enough to allow for further similar
enhancements. Some might say that the code looks good as
it is. Others will disagree. This dispute is pointless as long
as the battleground is meta-code (e.g. design patterns,
function/class names etc.). The reason we’ve pushed
through with this refactoring is this: business wanted to
enhance the appointment model. This should be an easy
change. It wasn’t! At least not in the original code base.
Now we’ve made it easy. Now is the time to deliver. No
more refactoring before any delivery!

This is it! We’ve delivered the changes.

61

Chapter 3 - Creating new doors

W e achieved our business goal. We’ve deployed
the changes! Now, we can massage our system
to make it even easier to change.

Extract a library

Let’s consider for a moment that a console user interface is
not very attractive, at least not for these kinds of
operations. I can only imagine the frustration of users. We
should prepare the system for a UI change, one that would
be easy to swap in, or even use in parallel with the existing
one. This sounds like we could externalise the whole I/O
concept to a library. We can even create an open source
project to host this library. So everything under the io
package will be moved out of our project to an open source
one (https://github.com/dannicolici/io). We’ll then simply

62

import this lib as a dependency and update the imports,
wherever the old deleted code was imported.

Objects? Why?

When one picks up a certain tool, without questioning it
and then uses it for a very long time, it becomes THE one
true tool. This is what happens with object oriented
programming (or OOP in short) too.

Try to remember what was the reason you started using
OOP. Generally, the promise was that it will model the real
world as closely as possible and you will have an easier
time modelling business concepts. Do you remember? We
have an Animal class that can makeNoise() and we derive a
Cat and a Dog from it, each of which specialise the
makeNoise() behaviour (one meows and the other barks).

We had tons of examples with specific Car models and all
kinds of abstractions that the modellers had fun modelling.
Little did they know that they would create a monster that
will come back to haunt them. You would have noticed that
the emphasis was on class inheritance. Abstractions that
derive from other abstractions and so on. This would give
rise to extremely brittle programs that would break if you
changed one small thing inside an abstraction.
Also, tons of almost identical abstractions were created,
because it was impossible to nail it from the get go and it
was too complex and dangerous to modify the originals.

63

Enter OOP principles and design patterns. These are tones
of rules that protect the programmers from shooting
themselves in the foot. So now you had to learn all those
complex technical concepts and get the domain logic right.
Phew! That sounds like a lot. It is! It doesn’t matter.
Programmers are supposed to be engineers, so they need
to do the due diligence and keep up with technology. And
so we did. Many of us.
But the elephant in the room is this: OOP was never meant
to be what it became. This statement comes directly from
the man that coined the term OOP, Alan Kay. I strongly
advise the reader to dig through some history of OOP. Alan
Kay envisioned objects (n.b. not classes) as biological cells.
They had their own internal processes and interacted with
other cells through a specific interface. He called this
message passing. This was the main idea behind OOP, not
inheritance. This would have allowed for small
computational units to be sent out in the world and talk to
each other in a meaningful way. So you could have tons of
objects that could tell each other to execute what they were
created for. Never would an object ask for internals of
another. Now fast forward to today and see if this is at all
what OOP means. There is a language/platform that is still
true to the original OOP concept today and that is Erlang/
BEAM. Erlang’s processes are exactly the objects Alan Kay
was proposing. What is awesome about Erlang is that a
process can be written using functions alone. This is great!
Functions are great! Please note that functions in
programming are not the same as those in mathematics.
Why is that? Because they exist in a medium and they can
access and modify that medium. This is where most
programmers have a hard time with functional
programming (or FP in short). FP is based on lambda

64

calculus, a mathematical language created by Alonzo
Church in the 1930’s. In lambda calculus, everything is
expressed as a function, even numbers (now you
understand the link between the anonymous computations
we pass around in our programs and the term “lambda”).
Clever FP people have thought of a trick to express the
runtime medium of the function as a function too. This has
originated in the Haskell community and has taken a more
formal route, one that tries to create an algebraic language,
which programmers can rely upon to do the correct
algebra within their domain (given they know how to
model their domain for that in the first place - not an easy
task).
I took a side road for a few seconds back there, but I believe
it’s worth awakening the reader’s interest in those areas.
Getting back to the section’s question: why objects?, I hope
you now understand the reason behind the original
concept of an object and also understand why most OOP
languages nowadays fail to deliver that concept. The
answer to why objects? is because they are simple to use,
test, scale and reason about. What we build in Java, for
example, by using classes, results in something that fails to
meet at least one of those things. Do we have something we
can use though? Sure! Let’s have a look!

Reduce inheritance

We’re going to move away from inheritance towards a
simpler way of expression. Earlier, we have introduced the
View interface, to abstract a concept. Why did we need to
abstract the concept? Because a caller would be able to use
the abstraction, without the need to understand what hides
behind. But there is another way of achieving this, using

65

functions (for now, Java’s Function object). So, let’s delete
the View interface. This will break the ListView and
TabularView classes. The only function in the View interface
was a function from a DataSource to a String. We can
formalise this by implementing this already existing Java
interface: Function.

public class ListView implements Function<DataSource, String> {

 @Override
 public String apply(DataSource ds) {
 return header(ds).append(data(ds)).toString();
 }
 …
}

public class TabularView implements Function<DataSource, String> {
 …

 @Override
 public String apply(DataSource ds) {
 StringBuilder sb = new StringBuilder();
 String rowSeparator = rowSeparator(ds.entryDetails());
 sb.append(rowSeparator);
 sb.append(headers(ds));
 sb.append(rowSeparator);
 sb.append(data(ds));
 sb.append(rowSeparator);

 return sb.toString();
 }
 …
}

Now instead of the old display function, we’ll use the new
apply function in the callers. I won’t show this easy
refactoring for all callers, but for Appointments. Basically
it’s just a matter of importing the Function interface and
replacing calls to display with apply. Sometimes this
technique comes in handy: first rename the function inside
the class (using IDE tools) and then you’ll only need to
import the interface in the callers.

66

public class Appointments {

 … display(Function<DataSource, String> view) {
 return (dao, io) -> {
 … view.apply(dao));
 return io;
 };
 }
}

For some reason, the creators of Java didn’t add at least the
syntactic sugar to allow for straightforward function calls:
f(a) vs. f.apply(a) when working with function objects (what
a strange thing to say… function object!). We can go a step
further and not derive from the function Function interface
at all, but simply declare the format as a function:

public class ListView {

 public static Function<DataSource, String> format =
 ds -> header(ds).append(data(ds)).toString();
 …
}

We’ll obviously need to declare the header and data private
functions as static. The same thing will happen with the
TabularView class:

public class TabularView {

 …

 public static Function<DataSource, String> format = ds -> {
 StringBuilder sb = new StringBuilder();
 String rowSeparator = rowSeparator(ds.entryDetails());
 sb.append(rowSeparator);
 sb.append(headers(ds));
 sb.append(rowSeparator);
 sb.append(data(ds));
 sb.append(rowSeparator);

 return sb.toString();
 };
 …
}

67

Callers won’t have to create instances of these 2 classes
anymore, in order to make use of their behaviour. They’ll
simply use these new functions we’ve just created. This is
what the call site looks like in the Application class:

FUNCTION_TABLE = new HashMap<>() {
 {
 put('l', Appointments.display(ListView.format));
 put('t', Appointments.display(TabularView.format));
 …
 }
};

If you’ve ever read the famous design patterns book by the
“GoF" (gang of four) team, you would have noticed the
“favour composition over inheritance” phrase. I have an
addendum to that: “favour function composition over
object composition”.

In the Appointments namespace, we return the 2 functions
that they themselves return an IO, but really they
“consume” the I/O operations inside (a.k.a. side effects). In
the spirit of FP purism, we should really just add a
description of the I/O computation and return that. We
won’t do that now, but instead emphasise the fact that
these “functions” are really just procedures. They consume
some input, creating some side effects and return nothing.
Java has something known as a Consumer which is well
suited for expressing this concept. In our case, we need a
Consumer of 2 things, or a BiConsumer.

68

public class Appointments {

 public static BiConsumer<AppointmentDAO, TypedIO> addNew() {
 return (dao, io) -> {
 …
 };
 }

 public static BiConsumer<AppointmentDAO, IO> display(
 Function<DataSource, String> view) {
 return (dao, io) ->
 …
 }
}

In both cases, the functions return a BiConsumer, or put
differently a side effect. Again, Java is not very consistent
with its API and wherever we had the caller executing the
returned function, by calling apply, we have to modify by
calling accept instead. For example:

Appointments.addNew().applyaccept(dao, io);

We can rewrite these two functions by removing Java’s
syntactic sugar, i.e. name(params), like so:

public class Appointments {

 public static BiConsumer<AppointmentDAO, TypedIO>
 addNew = (dao, io) -> {…};

 public static Function
 <Function<DataSource, String>, BiConsumer<AppointmentDAO, IO>>
 display = view -> (dao, io) -> …;

}

Now we simply have a function and a procedure inside a
namespace. We can reuse and compose them with other
functions without all the OOP ceremony and pitfalls:

69

import static ro.bitgloss.Appointments.*;
…
FUNCTION_TABLE = new HashMap<>() {
 {
 put('l', display.apply(ListView.format));
 put('t', display.apply(TabularView.format));
 put('a', addNew);
 …
 }
};
…

Pretty neat, right? We’ll push through with this idea of
replacing class abstractions with functions. Just like we did
with the View interface, we’ll delete the DataSource
interface as well. This is a bold move and a lot of things will
explode. Let’s fix the explosions first and we’ll see what
happens afterwards. Let’s look into the data access layer
first. We’ll have to drop the inheritance from DataSource,
and we’ll have to make the entryDetails and stream
separately available now. It’s a sort of normalisation of an
abstraction if you will. We’ll also do an improvement in the
way the content is returned. Currently, every time the
content is returned, a stream is eagerly produced. We’d like
the option to have a grasp on the content stream, but not
have it produced every time we call the
AppointmentsDAO.stream() function. We’ll therefore return
a Supplier of Stream, which the caller might or might not
ask to supply the stream. This way, the appointment stream
will be lazily produced. The same lazy concept can be
applied to saving an appointment, so instead of
immediately saving the appointment, we give the caller a
function which saves the appointment, to execute at its
own convenience. A Consumer is used for this side effect.
Since the data access layer will now be just a namespace,
we’ll make all the functions inside it static, as they won’t

70

need an instance to hang on to anymore. Let’s look at the
brand new data access layer, shall we?
public class AppointmentDAO {

 private static List<Appointment> DB = new ArrayList<>();
 public static final List<String> HEADERS = Arrays.asList(…);

 public static int appointmentsCount() {
 return DB.size();
 }

 public static Appointment findByIndex(int index) {
 return DB.get(index);
 }

 public static Consumer<Appointment> save =
 appointment -> DB.add(appointment);

 public static void deleteAllAppointments() {
 DB.clear();
 }

 public static Supplier<Stream<List<String>>> content = () ->
 DB.stream()
 .map(a ->
 Arrays.asList(
 a.isExpired() ? "EXPIRED" : a.getDate().format(TypedIO.DF),
 a.getDoctor(),
 a.getPatient(),
 a.getComments()));
}

Note that we’ve moved the headers to a constant, as they
are exactly that: constant. Getting the count of all
appointments is not changed, since in this case it’s an O(1)
operation and the same goes for findByIndex. There! We
fixed the mess we’ve made in the data access layer, by
removing the DataSource abstraction. By the way, welcome
to the “wonderful” world of type systems! We’ll make it
worse before we make it better, don’t worry.

The next mess we’ll fix is in the view namespaces. We’ll
take the ListView first. It’s not very painful. We simply need

71

to do the same normalisation as before. Let’s see what that
looks like:

public class ListView {

 public static BiFunction<List<String>, Supplier<Stream<List<String>>>, String>
 listFormat = (headers, content) ->
 header(headers).append(data(content)).toString();

 private static StringBuilder data(Supplier<Stream<List<String>>> content) {
 …content.get().forEach(…);…
 }

 private static StringBuilder header(List<String> hs) {
 …hs.forEach(…);…
 }
}

Pretty straightforward again, it’s just that the signature of
that listFormat grew pretty ugly. Hang in there! Let’s do the
same for the tabular view:

public class TabularView {
 …
 public static BiFunction<List<String>, Supplier<Stream<List<String>>>, String>
 tabularFormat = (headers, content) -> {
 String rowSeparator = rowSeparator(headers);
 return rowSeparator +
 headers(headers) +
 rowSeparator +
 data(content) +
 rowSeparator;
 };

 private static StringBuilder data(Supplier<Stream<List<String>>> content) {
 …content.get().forEach(…);…
 }

 private static StringBuilder headers(List<String> hs) {
 …hs.forEach(…);…
 }
 …
}

Same ugly type signature for tabularFormat. We’ll fix it, I
promise!

72

Next up, the Appointments namespace. We’ll do the addNew
first. This is now returning a BiConsumer, so a side effect,
but we’ll transform it into a function:

public static Function<Consumer<Appointment>, Consumer<TypedIO>> addNew =
 dao ->
 io -> {
 var appointment = new Appointment();
 io.readDate("Enter time: ", "invalid date", appointment::setDate);
 io.readString("Enter doctor: ", "", appointment::setDoctor);
 io.readString("Enter patient: ", "", appointment::setPatient);
 io.readString("Enter comments (if any): ", "",
 appointment::setComments);

 dao.accept(appointment);
 };

Whoa there! What just happened? Let’s simply read the
type signature and I promise that will make it easier to
understand. It’s a function that takes in an appointment
consumer and returns an (typed) I/O consumer. We named
the first input dao, but really, that’s just because we leak
caller details in a higher abstraction. We should probably
have named it appointmentConsumer, since it could do
anything with that appointment. I promised we’ll simplify
types later, so let’s just leave it for now. Moving on to
display:

public static Function<
 BiFunction<List<String>, Supplier<Stream<List<String>>>, String>,
 BiFunction<List<String>, Supplier<Stream<List<String>>>, Consumer<IO>>>

display = view ->
 (headers, content) ->
 io ->
 io.print(content.get().count() == 0 ?
 "No appointments found\n" :
 view.apply(headers, content));

The first BiFunction is the view or presentation function
and the second one takes the data and a consumer that,
well… consumes it. All those lists and suppliers are nothing

73

else but the headers and content. Again, I promise we’ll
encode this whole story in code abstractions. We’ll modify
one last production namespace that exploded and then
we’ll fix the compiler errors in the tests. The Application
namespace gets updated with the normalised types and
gets a bit of renaming too:

public class Application {

 private final static Console CONSOLE = Console.getInstance();

 private static final String MENU = """
 Menu
 l - list view
 t - tabular view
 a - add new appointment
 x - exit
 """;

 private static final Map<Character, Consumer<? super Console>>
 CHOICE_TO_FUNCTION = new HashMap<>() {
 {
 put('l', display.apply(listFormat).apply(HEADERS, content));
 put('t', display.apply(tabularFormat).apply(HEADERS, content));
 put('a', addNew.apply(save));
 put('x', (_ignore) -> System.exit(0));
 }
 };

 public static void main(String[] args) {
 CONSOLE.choice(MENU)
 .flatMap(c -> ofNullable(CHOICE_TO_FUNCTION.get(c)))
 .ifPresent(f -> f.accept(CONSOLE));
 main(args);
 }
}

I omitted the imports, for brevity. The old function table,
now CHOICE_TO_FUNCTION, still reads well. Go back and
read it from a non-programmer point of view. Did you do
it? Did it feel natural? What about if Java would have helped
us a bit more and we could have written this instead:
display(listFormat)(HEADERS, content)? Nothing wrong with
a little dreaming.

74

On to the tests, but we won’t look into the data access layer
tests, as those are boring. We simply have to adjust for the
new API in AppointmentDAO. The really interesting stuff,
where we start to see how using functions reduces
boilerplate is the two view tests. A quick reminder of what
the list view test used to look like:

@Test
public void display() {
 var ds = new DataSource() {
 @Override
 public List<String> entryDetails() {
 return Collections.singletonList("text, other text");
 }

 @Override
 public Stream<List<String>> stream() {
 return Stream.of(
 Arrays.asList("data", "other data"),
 Arrays.asList("x", "y"));
 }
 };
 var expected = "Details (text, other text):\n- data, other data;\n- x, y;\n";

 var actual = ListView.format.apply(ds);

 assertEquals(expected, actual);
}

Right? Implement interface, override, curly braces (oops,
blasphemy!), all the ceremony. Now let’s see what came out
of our normalisation refactoring:

@Test
public void display() {
 var expected = "Details (text, other text):\n- data, other data;\n- x, y;\n";

 var actual = ListView.listFormat.apply(
 Collections.singletonList("text, other text"),
 () -> Stream.of(
 Arrays.asList("data", "other data"),
 Arrays.asList("x", "y")));

 assertEquals(expected, actual);
}

75

Pretty cool! Just call a function with some arguments. This
is what “easy-to-test code” means. We didn’t have to kick-
start a whole new life form in order to finally test a function
call. It now allows us to focus on the domain more. Which
reminds us that we’ve touched the eager/lazy loading
mechanism, when we introduced that supplier, remember?
In Java (and other languages too), when we try to reuse a
stream we get unpredictable results at best, but most likely
we get en exception. So, we’ll write a test that simply
proves we can safely do multiple calls. We just do the
multiple calls, without any assertion, because an exception
would make the test fail and given its name, we’d know why
it failed:

@Test
public void calling_format_twice() {
 var headers = Collections.singletonList("text, other text");
 Supplier<Stream<List<String>>> content = () -> Stream.of(
 Arrays.asList("data", "other data"),
 Arrays.asList("x", "y"));

 ListView.listFormat.apply(headers, content);
 ListView.listFormat.apply(headers, content);
}

We could extract the headers and content, since they
duplicate the ones in the previous test. Whatever you think
works for you. Some people like to see the test data inside
the test, others say code is code and shouldn’t be
duplicated. It’s a matter of perspective and trade-offs, I
think, so you get to make that decision based on your own
circumstances. I decided to leave the duplication in.

We can simplify the main function a bit further:

76

public static void main(String[] args) {
 CONSOLE.choice(MENU)
 .map(CHOICE_TO_FUNCTION::get)
 .ifPresent(f -> f.accept(CONSOLE));
 main(args);
}

Represent data as data

Before we move on to the type vindication I mentioned,
we’re going to make a slight detour. The model is now a
class. This is a language limitation, because the model is
data, not a class of something. Lots of programming
languages have specific concepts that come closer to the
notion of data and lately, Java has introduced such a
concept too. It’s called a record. This comes with a variety
of nice, built-in helpers, that remove the need for
boilerplate code. We are therefore going to use this record
concept with our model:

public record
Appointment(LocalDate date, String doctor, String patient, String comments) {
 public boolean isExpired() {
 return date.isBefore(LocalDate.now()) &&
 Period.between(date, LocalDate.now()).getMonths() > 6;
 }
}

Please note that at the time of writing this, some features
are still in preview mode in the language and might be
removed in future versions (this actually happened a
couple of times while evolving the project). We can see that
the new model is constructed together with all its
properties. It’s also somewhat immutable (docs say its
shallowly immutable), meaning that the properties of a
record can contain mutable properties of their own, but still
it’s a good step forward.

77

We’ll construct new instances like this:

public static Function<Consumer<Appointment>, Consumer<TypedIO>> addNew =
 dao ->
 io -> {
 var appointment = new Appointment(
 io.readDate("Enter date: ", "invalid date"),
 io.readString("Enter doctor: ", "").orElse(""),
 io.readString("Enter patient: ", "").orElse(""),
 io.readString("Enter comments (if any): ", "").orElse(""));

 …
 };

And we’ll have convenience methods for each property,
which we can use like so:

public static Supplier<Stream<List<String>>> content = () ->
 DB.stream()
 .map(a ->
 Arrays.asList(
 a.isExpired() ? "EXPIRED" : a.date().format(TypedIO.DF),
 a.doctor(),
 a.patient(),
 a.comments()));

Yes, I know… we kept the isExpired in the model, but so
what? It’s a property of the model too.

Type abstractions

Finally! We’ve gotten to the point where I cannot digress
anymore and I have to deliver what I’ve promised. Let’s
take care of those messy type signatures. We’ll take them
one by one, to make things easier to follow. Java doesn’t
have type aliases, but we’ll construct some out of existing
language tools. First, let’s make sure we understand what a
type alias is. It is simply another way of referring to the
same type. Let’s refresh our memories on the view format
type signature:

78

public static BiFunction<List<String>, Supplier<Stream<List<String>>>, String>
 listFormat =
 (headers, content) -> header(headers).append(data(content)).toString();

That long, generic BiFunction means that we want to take
the headers (a List<String>) and content (a
Supplier<Stream<List<String>>>) as input and transform
them into another shape (a String). This is basically what
we mean by view. We’ll create a new namespace, called
Types and define this view type in there:

public interface Types {

 interface View extends
 BiFunction<Collection<String>,
 Supplier<Stream<Collection<String>>>, String> {}

}

Here we go. That wasn’t too difficult. Ah and also, we’ve
generalised those lists to collections. Going back to the
ListView, we’ll simply use this new type alias in our
listFormat type signature:

public static View listFormat = (headers, content) ->
 header(headers).append(data(content)).toString();

We’ve changed nothing in functionality, but added a ton of
value to our code shape. It’s way more readable now, isn’t
it? We’ll do the same to our tabular format:

public static View tabularFormat = (headers, content) -> {
 String rowSeparator = rowSeparator(headers);
 return rowSeparator +
 headers(headers) +
 rowSeparator +
 data(content) +
 rowSeparator;
};

79

Obviously, we’ll also have to satisfy the compiler when it
complains that it expects lists all over the place (remember
we’ve changed them to collections) where view types are
being passed around.
Let’s look at the old type signature for the function that
displays these views:

public static Function<
 BiFunction<List<String>, Supplier<Stream<List<String>>>, String>,
 BiFunction<List<String>, Supplier<Stream<List<String>>>, Consumer<IO>>>
 display = …

We recognise the first argument to the returned function as
being the View alias we’ve just defined. The return of that
function also has a View as an argument, but it also takes a
Consumer as a second argument. Ok, that means we can
reuse the View alias, but we need to create an alias for the
return function. Again, we design the alias by going
through the existing type signature. It’s a BiFunction that
takes a view and a consumer, that means it’s probably going
to do some side effects, like actually writing that view
somewhere (we know it does). So it takes a view and it
writes it, hmmm… What about ViewWriter? Yeah, that
sounds good.

public interface Types {

 interface View
 extends BiFunction<Collection<String>,
 Supplier<Stream<Collection<String>>>, String> {}

 interface ViewWriter<W>
 extends BiFunction<Collection<String>,
 Supplier<Stream<Collection<String>>>,
 Consumer<W>> {}
}

80

We use a generic type for the consumer, because we don’t
need to enforce a specific type. Did we improve the
readability of the display function?

public static Function<View, ViewWriter<IO>> display = …

There’s no doubt that we did. Could we have chosen a
different way to represent those types? Definitely! I even
encourage you to think of alternatives. It’s a good exercise
for getting better at modelling such things.
We’re left with the function that reads appointments and
saves them to the data store. Its current type signature is
this:

public static Function<Consumer<Appointment>, Consumer<TypedIO>>
addNew = …

It takes a consumer and returns a consumer. This means it
connects 2 side-effects. And it really does. It reads some
input and writes some content, both of which are side
effects. We’ll create a type alias for it, naming it bluntly, just
like we did we the other ones:

public interface Types {

 interface View
 extends BiFunction<Collection<String>,
 Supplier<Stream<Collection<String>>>, String> {}

 interface ViewWriter<W>
 extends BiFunction<Collection<String>,
 Supplier<Stream<Collection<String>>>,
 Consumer<W>> {}

 interface ReadWriter<R, W> extends Function<Consumer<R>, Consumer<W>> {}

}

ReadWriter. Again, we parameterised the consumed types.

81

Using this type alias, the addNew function’s type signature
becomes:

public static ReadWriter<Appointment, TypedIO> addNew =
 writer -> reader -> {
 var appointment = new Appointment(
 reader.readDate("Enter date: ", "invalid date"),
 reader.readString("Enter doctor: ", "").orElse(""),
 reader.readString("Enter patient: ", "").orElse(""),
 reader.readString("Enter comments (if any): ", "").orElse(""));

 writer.accept(appointment);
 };

Also, we now have a good name for the lambda parameters:
writer and reader. Again, we could have done this
differently, by splitting up the reading and writing and
composing them back in the addNew function. It’s another
thought exercise for the reader (pun intended). While we’re
at it, why don’t we simplify this function even further? We
have no need for that intermediate variable. It’s pretty clear
what a new Appointment means, so:

public static ReadWriter<Appointment, TypedIO> addNew =
 writer -> reader -> writer.accept(new Appointment(
 reader.readDate("Enter date: ", "invalid date"),
 reader.readString("Enter doctor: ", "").orElse(""),
 reader.readString("Enter patient: ", "").orElse(""),
 reader.readString("Enter comments (if any): ", "").orElse("")));

Phew! That was quite a ride in type-land. We’ve gotten
pretty far and the code shape is quite different. We’re
expressing most things through functions now. I cannot
know your preference, but I certainly prefer less
boilerplate, straight to the point, easier to compose and test
code. I can only hope that you do too. There’s one more
thing I’d like to change and then we’ll see what kind of
possibilities this new code shape has offered us.

82

There is one thing I’d like to do for the display function:

public static Function<View, ViewWriter<IO>> display = view ->
 (headers, content) -> io ->
 io.print(content.get().count() == 0 ?
 "No appointments found\n" :
 view.apply(headers, content));

We notice that there is no test for the second case, the one
with no appointments. Let’s see how easy it is to write one,
given our current code shape. First we extract the TestIO
inner class from CreateNewAppointmentTest and make it top
level, so that the new test can reuse it.
The newly created test is related to displaying
appointments, so DisplayAppointmentsTest seems like an
appropriate name. We’re only going to test the no
appointments scenario, so we’ll write a single test:
@Test no_appointments.

public class DisplayAppointmentsTest {

 private TestIO io;

 @BeforeEach
 public void setUp() {
 io = new TestIO();
 }

 @Test
 public void no_appointments() {
 var writer = Appointments.display
 .apply(ListView.listFormat)
 .apply(singletonList("header"), Stream::empty);

 writer.accept(io);

 assertTrue(io.printBuffer.contains("No appointments found\n"));
 }

}

It was indeed easy to write, wouldn’t you agree? If you
don’t, think about this: we wrote a test for existing code.

83

Usually, when we have to do this, we find ourselves
mocking many dependencies of the class under test and
diving deep into their internals to mock specific behaviours
(which is a terrible practice). If you think to yourself “well,
this is just a toy project, the code is not nearly as vast as
you’d find in an enterprise project”, you would be looking
at the wrong aspect of code: quantity. You should be
looking at code shape instead. Who decided that you can’t
have this shape of code, but in a very large quantity?
I’d like to think that I’ve given you some tools with which
you can reshape the code into something easier to change,
maintain and test.

This concludes the code reshaping journey we’ve been on
for a while now. I’d like to show you next how easy it is to
take otherwise hard decisions, just because we’ve applied
these techniques to our project.

84

Add an HTTP interface

We talked about how last century it was to have a console
based application nowadays. Well, what’s stopping us from
slapping an HTTP presentation layer on top of our system?
Turns out not much. We can simply write the new
presentation layer and hook it directly into our system,
without disrupting too much of anything, you’ll see.
Let’s get on with it, shall we? For adding HTTP support to
our application, we need a library that can do all protocol
related stuff and hands us some hooks to do application
specific things. We find a small, neat library that does
exactly this: sparkjava (you can find it at sparkjava.com).
Add it to our dependencies

dependencies {
 …
 implementation('com.sparkjava:spark-core:2.9.2')
}

and we’re already on our way to a merry HTTP UI. The
library has a nice starting-up documentation page which we
can use to get up to speed with the API and we’re ready to
write our 2 endpoints, one for creating new appointments
and another for reading existing ones. I’m fairly sure that if
you’ve done web development before, you’ll have
absolutely no trouble following along. A new entry point is
in order, so we’ll just call it HttpApplication in lack of a
better term.

85

http://sparkjava.com

public class HttpApplication {

 public static void startHttpEndpoints() {
 get("/appointments", (req, res) -> {return "test";});
 get("/appointment", (req, res) -> {return "test";});
 }

}

I chose to implement adding as a GET operation, to make it
easy on myself to pass parameters along (a POST would
have forced me to create an HTML form and I don’t need
that to illustrate my point). This is a simple mapping of a
path to a function. It’s all we need really, no fancy filtering
or routing for this proof of concept. Spark will run on port
4567 by default, so let’s test that by calling this side-effect
from our Application namespace:

public class Application {

 static { HttpApplication.startHttpEndpoints(); }
 …
}

That’s right. We simply throw it inside a static block and
have it run on Application load. It’s perfect for now. We fire
up the application and open a browser at http://
localhost:4567/appointments. Sure enough, we get a page
containing the text “test”. We now have two parallel
applications running, with no real connection between
them other than the fact that they run inside the same JVM.
We’ll keep it like this for a while, until we build an HTML
view and an HTTP specific I/O.
Write the test first, like we did before for new things and we
end up with a test that looks like this:

86

http://localhost:4567/appointments
http://localhost:4567/appointments

public class HtmlTableViewTest {
 @Test
 public void display() {
 var expected = "<table><th>text</th><tr><td>data</td></tr></table>";

 var actual = HtmlTableView.htmlTableFormat.apply(
 Collections.singletonList("text"),
 () -> Stream.of(Collections.singletonList("data")));

 assertEquals(expected, actual);
 }
}

We invented the namespace HtmlTableView and function
htmlTableFormat, because we know this is exactly what we
need. We’re going to create them now and run the TDD
cycle until we finish the implementation:

public class HtmlTableView {

 public static View htmlTableFormat = (headers, content) ->
 String.format("<table>%s</table>",
 header(headers).append(data(content)).toString());

 private static StringBuilder data(
 Supplier<Stream<Collection<String>>> content) {
 StringBuilder sb = new StringBuilder();
 content.get().forEach(row -> {
 sb.append("<tr>");
 row.forEach(item -> sb.append(String.format("<td>%s</td>", item)));
 sb.append("</tr>");
 });

 return sb;
 }

 private static StringBuilder header(Collection<String> hs) {
 StringBuilder sb = new StringBuilder();
 hs.forEach(d -> sb.append(String.format("<th>%s</th>", d)));

 return sb;
 }
}

Same concept as the other two views we already have. Very
straight forward to implement. We have one task down,
now we move on to the second one: custom HTTP I/O. I’ll

87

write it and go through it step by step, so we make sure it’s
clear:

public class HttpApplication {

 public static void startHttpEndpoints() {
 get("/appointments", (req, res) -> {
 StringBuilder sb = new StringBuilder();
 display.apply(htmlTableFormat).apply(HEADERS,
 content).accept(httpIo(req, sb));
 return sb.toString();
 });
 get("/appointment", (req, res) -> {
 StringBuilder sb = new StringBuilder();
 addNew.apply(save).accept(httpIo(req, sb));
 return "created by interaction flow:
"+sb.toString();
 });
 }

 private static TypedIO httpIo(Request req, StringBuilder sb) {
 var params = Optional.ofNullable(req.queryString())
 .map(qs -> Arrays.stream(qs.split("&"))
 .map(p -> p.substring(p.indexOf("=") + 1))
 .collect(toList())
 .iterator());
 return new TypedIO() {
 @Override
 public void print(Object o) { sb.append(o); }

 @Override
 public void printLine(Object o) { print(o + "
"); }

 @Override
 public Optional<String> readString(String prompt, String errorMessage) {
 return params.map(p -> {
 var val = p.next();
 print(prompt+val+"
"); // not necessary, but added to show I/O
 // interaction behind scenes
 return val;
 });
 }
 };
 }
}

The display.apply(format) and addNew.apply(save) are
already familiar, as we’ve used them exactly like this for the
console application. We notice a custom HTTP I/O

88

implementation which does nothing more than parsing
request parameters from the query string and leveraging a
StringBuilder for passing the information back to the
presentation layer. I’ll talk about each one of those things
next.

First, we deal with the reading of existing appointments,
using the “/appointments” endpoint.
The httpIo function takes a new request and a new
StringBuilder every time that endpoint is called and always
returns a new TypedIO. The returned TypedIO uses the
StringBuilder as writing medium, by overriding the printing
methods, so when the consumer returned by
apply(HEADERS, content) accepts this I/O object, it will
populate the StringBuilder with the appointments in the
htmlTableFormat shape. That was a mouthful, I know, but
go back and forth between the code and this paragraph and
it will make sense.

Next, we look at adding a new appointment, using the
other endpoint “/appointment”. This is bit trickier to get in
the first go, because I used a convention, as a shortcut to
get this done faster (it is a POC after all). The convention is
that I know the order in which the appointment fields are
read so I chose to send them in the same order in the query
string. I parse them and save them in an Iterator variable. I
override IO’s readString, to pick the next parameter on
each call and that’s it. Also, I added a bit of extra logging in
the UI, to actually see the operations happening behind the
curtain.

I know it’s not what you’d write in production (I hope), but
it’s a good exercise to see which trade-offs I made to get the

89

POC going as easy and fast as possible. This way I can
collect useful feedback from business and maybe even
users as early on in the process, to avoid a possibly bad
investment, in case they don’t like it.

Let’s fire it up and give it a try. We launch the Application’s
main function, open up a browser and type this into the
URL bar: http://localhost:4567/appointments

Nice! This is exactly what we would have expected to see
when we have no appointments. Let’s see if the running
console confirms this.

Menu
l - list view
t - tabular view
a - add new appointment
x - exit
l
No appointments found

90

http://localhost:4567/appointments

Indeed it does. But the fun part is seeing effects of
interaction with one UI in the other. We’re going to test
adding an appointment through the HTTP UI:

We can see the extra logging we added. Before we check
the appointments in the browser, let’s check the console.

Menu
l - list view
t - tabular view
a - add new appointment
x - exit
t
--
| TIME | DOCTOR | PATIENT | COMMENTS |
——---
 31/12/2020 doc pat bla
--

Whoa! It’s there! Even if it’s expected, it’s a nice feeling of
accomplishment. Check the display in the browser now:

91

It works as expected. We can test the other way around too
and see that it works. One aspect to consider when adding
another “terminal” to a system is concurrency. What
happens when more than one user puts or reads data from
our datastore? I don’t know, but we should surely add good
system tests to cover that. Meanwhile, we know that our
datastore is just an ArrayList. Since we know we might get
some concurrency during the business pitch (a.k.a. demo),
we can just protect it with a synchronisation wrapper:

private static List<Appointment> DB =
 Collections.synchronizedList(new ArrayList<>());

One final refactoring before the demo. Currently we have
an Application and an HttpApplication. It’s a bit strange,
considering the console is not mentioned anywhere in the
names. We’ll fix that by moving the console code in
ConsoleApplication and keeping Application simply for
starting up the other two.

92

public class ConsoleApplication {
 …
 private static boolean loop = true;
 …

 private static final Map<Character, Consumer<? super Console>>
 CHOICE_TO_FUNCTION = new HashMap<>() {
 {
 …
 }
 };

 public static void loop() {
 while (loop)
 CONSOLE.choice(MENU)
 .map(CHOICE_TO_FUNCTION::get)
 .ifPresent(f -> f.accept(CONSOLE));
 }
}

I also promised that by the end of the book, I’ll fix the
recursion that will haunt us when scaling, so here we go,
it’s fixed.

The Application class is doing nothing other than starting
ConsoleApplication and HttpApplication:

public class Application {
 public static void main(String[] args) {
 HttpApplication.startHttpEndpoints();
 ConsoleApplication.loop();
 }
}

We have now completed the POC which is ready to take for
a spin with the business. How difficult was this POC to
write? Think about it. Imagine you would have had to add
an HTTP interface to the original code. How long would
that have taken?

93

Conclusions

I have shown here that confronting an ugly code base is
not something to be scared of. It can become
something beautiful, if you have the patience and most

importantly the dedication for it.

I love good engineering and good engineering means
simple solutions that work great. Please don’t understand
this as “quick hacks for the win”. Quick hacks have their
own place in engineering, but they should not be the first
thing on the menu. What I really hope to have achieved
with this book is to have you consider healing old, sick
systems when you encounter them, while still being able to
serve business requests to a high standard.
I know it’s easy and tempting to say “this legacy code is too
dirty and is not worth fixing”, but this must not be a lightly
spoken statement. It needs to be backed up by proper
analysis. If the techniques shown in this book work for your
system (and in most cases I’ve encountered they do - hence
the book), then you must be fair and do your best to heal it.

94

The analogy to medicine, in the book’s title, is not
accidental. It’s actually a very good metaphor, describing a
doctor-patient relationship, you being the doctor and the
system being the patient. You would like your doctors to do
all that’s possible to salvage your health (and your life if
necessary), before they declare you “too dirty and not
worth fixing”. Some might say that the stakes are not the
same and that could be true, but which is higher? Imagine
software that flies hundreds of people in the sky. Are the
stakes high?
I say good engineers appreciate a tough challenge and
encountering a dirty code base is indeed such a challenge.
Whenever I get to see new projects with legacy code, I
don’t get discouraged, but rather feel motivated. “Bring it
on!” I say.

The biggest problem of software systems, by far, is over
engineering. Just like you were probably amazed by the
whole replication and backup system for the console
application, the same goes for source code. If you think
about it, what was the amazement factor for the two
concepts you encountered in the appointments app:
infrastructure and code? The code was not so surprising,
right? Why? Because this is probably what you have to deal
with on a daily basis and anything that becomes familiar
also becomes the norm.

I know I have touched some sensitive subjects, one of
which is OOP vs. FP. I do not want to make a case of one
versus the other, because that is not the point. The point is
to make your program as simple and as clean as possible. It
so happens that today’s programming functions are simpler
than today’s programming objects and hence make for a

95

better choice when writing clean code. You might disagree
and that’s fine.

Tests. Ah, the good old tests and the never-ending
flamewars about unit-integration-system-and-what-have-
you tests. What is a unit? A unit is a class. No, a unit is a
method. No, a unit is a module. As long as the tester
returns your feature back to you with a null pointer or
reference exception, it’s all dust in the wind.
I remember it was ten years ago, I was in Amsterdam’s
airport, Schiphol, waiting to board a flight to Montreal. We
started to grow anxious, as the boarding deadline had
passed, but the gates were still closed. Then we heard this
on the PA:
“Ladies and gentlemen, there was a technical failure at one
of the plane’s parts and we needed to replace it. The
technical crew replaced the part and now they are running
diagnostics. We’ll start boarding as soon as possible. Thank
you for your patience!”
This was actually the first time in my life I really felt
protected by a suite of tests. The story has a happy ending,
obviously, as I have safely landed in Montreal and lived to
tell the story.
What makes a good suite of tests? First and foremost, a
good suite of tests guards against defects sneaking into your
system. Second, the feedback should come as fast as
possible. I dare say that all other properties of the test
suites derive from these two. Whatever level the tests are
written for, they should treat the system under test as a
black box and only verify the effects of exercising it, not the
insides of it.
Test coverage metrics are a lie. Controversial? Maybe. True?
Definitely! Let me explain. Let’s say you have a program

96

composed of 100 classes. Each of those classes has 5 fields.
Some are composed of primitive fields and some have other
classes as fields too. Pretty small, for your neighbourhood
friendly production system.
Now a class is really a product type. What does that mean?
It means that a class A with two fields, a String and an
Integer can have a number of valid instances representing
the Cartesian product of those two primitive types:
String x Integer.
Test coverage metrics usually count the lines of production
code that were exercised during the test run, not all the
possible combinations of all those object values in the
system. You see now how the hundred classes system can
easily become impossible to really cover properly. What
usually happens is you get the happy flow values and a few
corner cases covered. If you exercised all the production
code paths, the metrics will give you 100% coverage. Lies!
We have property based tests, that do a better job at
covering values, but even they are no match for all possible
values, as that would be totally unpractical with today’s
computing power. Long story short, please don’t obsess
over test coverage metrics as it’s surely not worth spending
too much energy on.
So what should you test for then? You should test the things
your system was specifically designed for. Anticipate and
plan for a few sensible user mistakes and beyond that, if
the user drives the car off a cliff…
“If you design your tests properly, breaking one tiny part in
the production code should break an equally tiny part in
the tests”. Is this true? It should be true, for unit tests (tests
that exercise small, independent parts of the system). It
should not be true for testing the system as a whole. Why
not? Imagine you break the code that connects to your

97

main database. Most of the system should be dead at this
point. So yes, different strategies for different testing
angles.
I care a lot about testing (as you might have noticed) and
maybe this will make a good subject for a next book, but for
now, I’m going to leave it at this.

Refactoring is about changing the shape of code, not its
runtime outcome. Be careful how you use this term,
especially when talking to business people. By now, they
are aware of the term and they’ve come to hate it. I tend to
agree. When you ask for something apparently trivial, but
you get the “we need a month of refactoring” response,
over and over, you’re kind of entitled to feel angry. You’ve
seen how we refactored just enough to fit the new
requirement in and we’ve discussed how we should
triangulate decisions for every feature. I’ve been asked
countless times before how a programmer should “sell”
refactoring to business. It’s actually not hard at all.
Engineers know how to estimate change costs, based on the
status quo of their system.
Programmers are software engineers and they should be
able to do the same. One should simply say how much it
costs (time is fine, business knows how to express that in
money) and present the reasons in terms the business can
understand. For example, you don’t want to say things like
“this will take longer, because this HashMap is not
synchronised and when two threads…”, because you’ll be
speaking martian for most business people. Instead, what
you should be saying is “for this, we need some time to
adapt the system for allowing multiple users to access this
feature at the same time, otherwise, they’ll get errors and
complain”. Now that, they can very much understand and

98

judge the impact of. Don’t overestimate to hide refactoring
time, instead earn it by properly “selling” it.

The book presents empirical methods for source code
transformations. This places it very much into the
engineering realm, rather than the theoretical one. I do
however, strongly believe, that we could enrich
programming techniques with more theoretical concepts.
This is being done successfully in lots of other disciplines.
We should leverage mathematics more, because it has way
better computational mechanisms, that we’ve been
successfully using for millennia.
What we keep doing in programming is constantly
reinventing the wheel, by implementing ad-hoc rules. What
we should be doing is map the domain to mathematical
concepts (e.g., algebraic notions like groups, semigroups,
categories, etc.) and leverage that algebra to do the
computations for us.
The Haskell community is trying to achieve this goal and
their endeavour has echoed in other communities as well.
This has generated a plethora of libraries in many
languages, but I don’t think the industry is yet prepared for
a major change like this (even though this started some
decades ago already).

I’m not going to make any predictions of the direction the
industry is going to take, because I’m almost certainly going
to be wrong, but nevertheless, I do think that we can only
benefit by reuniting programming with math.

99

The source code

The appointments project is publicly hosted on GitHub at:

https://github.com/dannicolici/appointments

The chapters in the book are mostly driven by the commit
history. Sometimes they might be ahead and sometimes
they might leave some small things out, like minor
refactoring work. Overall, it pretty much goes hand in
hand.

If you’ve made it this far, I’d like to thank you and wish you
all the best in your programming journey!

100

https://github.com/dannicolici/appointments

About the Author

Born in 1981, in Baia Mare, Romania, I am an IT industry
professional, with a passion for computers and computer
programming since early childhood. I built many software
systems over the years, covering a wide range of business
domains, such as telecom, finance, sports, etc. My passion
extends beyond computers to good engineering and
science in general. I also play electric guitar, as a hobby.

You can reach me at dan.nicolici@bitgloss.ro

101

mailto:dan.nicolici@bitgloss.ro

	Prologue
	Chapter 1 - Software systems
	Chapter 2 - Practical example
	Chapter 3 - Creating new doors
	Conclusions
	About the Author

